OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A240–A253

Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography

Pascal Picart and Patrice Tankam  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A240-A253 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper discusses convolution algorithms to reconstruct off-axis digital holograms. The problem of convolution is addressed by considering the spatial spectral properties of digital holograms, especially the unusual localization property of the Fourier spectrum of the hologram, in regard to the physical object space. After deriving the sampling requirements for the transfer functions, three approaches are considered with the concept of spatial bandwidth extension: zero padding, spectrum scanning, and adjustable magnification. The theoretical discussion is completed by experimental illustrations that enable the algorithms to be objectively compared.

© 2012 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(090.1995) Holography : Digital holography

Original Manuscript: July 16, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 18, 2012
Published: November 27, 2012

Pascal Picart and Patrice Tankam, "Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography," Appl. Opt. 52, A240-A253 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  2. Th. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997). [CrossRef]
  3. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  4. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase shifting color digital holography,” Opt. Lett. 27, 1108–1110 (2002). [CrossRef]
  5. J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16, 2514–2519 (2008). [CrossRef]
  6. T. Kakue, T. Tahara, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holography using two phase shifts,” Appl. Opt. 48, H244–H250 (2009). [CrossRef]
  7. T. Kakue, K. Ito, Y. Awatsuji, K. Nishio, T. Kubota, and O. Maoba, “Parallel phase-shifting digital holography capable of simultaneously capturing visible and invisible three-dimensional information,” J. Disp. Technol. 6, 472–478(2010). [CrossRef]
  8. J. Garcia-Sucerquia, “Color lensless digital holographic microscopy with micrometer resolution,” Opt. Lett. 37, 1724–1726 (2012). [CrossRef]
  9. N. Demoli, D. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11, 767–774 (2003). [CrossRef]
  10. J. M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471–5480 (2008). [CrossRef]
  11. G. Pedrini, P. Fröning, H. J. Tiziani, and M. E. Gusev, “Pulsed digital holography for high-speed contouring that uses a two-wavelength method,” Appl. Opt. 38, 3460–3467 (1999). [CrossRef]
  12. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wave front reconstruction and multi-wavelength contouring,” Opt. Eng. 39, 79–85(2000). [CrossRef]
  13. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45, 7610–7616 (2006). [CrossRef]
  14. A. Wada, M. Kato, and Y. Ishii, “Multiple-wavelength digital holographic interferometry using tunable laser diodes,” Appl. Opt. 47, 2053–2060 (2008). [CrossRef]
  15. A. Wada, M. Kato, and Y. Ishii, “Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25, 3013–3020 (2008). [CrossRef]
  16. U. P. Kumar, B. Bhaduri, N. K. Mohan, M. P. Kothiyal, and A. K. Asundi, “Microscopic TV holography for MEMS deflection and 3-D surface profile characterization,” Opt. Lasers Eng. 46, 687–694 (2008). [CrossRef]
  17. J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007). [CrossRef]
  18. P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49, 320–328 (2010). [CrossRef]
  19. P. Tankam, Q. Song, M. Karray, J. C. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010). [CrossRef]
  20. P. Tankam and P. Picart, “Use of digital color holography for crack investigation in electronic components,” Opt. Lasers Eng. 49, 1335–1342 (2011). [CrossRef]
  21. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008). [CrossRef]
  22. A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008). [CrossRef]
  23. Th. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771–778 (2002). [CrossRef]
  24. Th. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Opt. Eng. 41, 1829–1839 (2002). [CrossRef]
  25. C. S. Guo, L. Zhang, Z. Y. Rong, and H. T. Wang, “Effect of the fill factor of CCD pixels on digital holograms: comment on the paper,” Opt. Eng. 42, 2768–2772 (2003). [CrossRef]
  26. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase shifting digital holography and application to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  27. M. Liebling, T. Blun, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367–377 (2004). [CrossRef]
  28. L. Xu, X. Peng, Z. Guo, J. Mia, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13, 2444–2452 (2005). [CrossRef]
  29. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008). [CrossRef]
  30. N. Verrier and M. Atlan, “Off-axis digital hologram reconstruction: some practical considerations,” Appl. Opt. 50, H136–H146 (2011). [CrossRef]
  31. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189 (2008). [CrossRef]
  32. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Editions, 1996).
  33. L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett. 18, 846–848 (1993). [CrossRef]
  34. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Image reconstruction for in-line holography with the Yang-Gu algorithm,” Appl. Opt. 42, 6452–6457 (2003). [CrossRef]
  35. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787–1789 (2004). [CrossRef]
  36. J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  37. C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, “Digital recording and numerical reconstruction of lens less Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999). [CrossRef]
  38. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005). [CrossRef]
  39. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999). [CrossRef]
  40. J. C. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280, 243–248 (2007). [CrossRef]
  41. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  42. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004). [CrossRef]
  43. J. F. Restrepo and J. Garcia-Sucerquia, “Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform,” Appl. Opt. 49, 6430–6435 (2010). [CrossRef]
  44. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004). [CrossRef]
  45. L. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett. 31, 897–899 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited