OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A310–A318

Numerical evaluation of the limit of concentration of colloidal samples for their study with digital lensless holographic microscopy

John F. Restrepo and Jorge Garcia-Sucerquia  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A310-A318 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The number of colloidal particles per unit of volume that can be imaged correctly with digital lensless holographic microscopy (DLHM) is determined numerically. Typical in-line DLHM holograms with controlled concentration are modeled and reconstructed numerically. By quantifying the ratio of the retrieved particles from the reconstructed hologram to the number of the seeding particles in the modeled intensity, the limit of concentration of the colloidal suspensions up to which DLHM can operate successfully is found numerically. A new shadow density parameter for spherical illumination is defined. The limit of performance of DLHM is determined from a graph of the shadow density versus the efficiency of the microscope.

© 2012 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2980) Image processing : Image enhancement
(110.0180) Imaging systems : Microscopy
(090.1995) Holography : Digital holography
(100.4999) Image processing : Pattern recognition, target tracking

Original Manuscript: August 16, 2012
Revised Manuscript: October 31, 2012
Manuscript Accepted: November 1, 2012
Published: November 28, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

John F. Restrepo and Jorge Garcia-Sucerquia, "Numerical evaluation of the limit of concentration of colloidal samples for their study with digital lensless holographic microscopy," Appl. Opt. 52, A310-A318 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Masliyah and S. Bhattacharje, Electrokinetic and Colloid Transport Phenomena (Wiley, 2006).
  2. L. L. Schramm, Emulsions, Foams, and Suspensions: Fundamentals and Applications (WILEY-VCH Verlag, 2005).
  3. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  4. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000). [CrossRef]
  5. M. D. Ediger, “Movies of the glass transition,” Science 287, 604–605 (2000). [CrossRef]
  6. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888–891 (2000). [CrossRef]
  7. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002). [CrossRef]
  8. H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37, 2577–2579 (2012). [CrossRef]
  9. J. Fung, K. Martin, R. Perry, D. Kaz, R. McGorty, and V. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19, 8051–8065 (2011). [CrossRef]
  10. M. Pluta, Advanced Light Microscopy, Principles and Basic Properties (Elsevier Science, 1988).
  11. A. Dinsmore, E. Weeks, V. Prasad, A. Levitt, and D. Weitz, “Three-dimensional confocal microscopy of colloids,” Appl. Opt. 40, 4152–4159 (2001). [CrossRef]
  12. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett. 33, 1626–1628 (2008). [CrossRef]
  13. S. Chapin, V. Germain, and E. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095–13100 (2006). [CrossRef]
  14. S. Lee, Y. Roichman, G. Yi, S. Kim, S. Yang, A. van Blaaderen, P. van Oostrum, and D. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007). [CrossRef]
  15. D. Hincapie, C. Restrepo, H. Casanova, H. J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper DTuC7.
  16. D. C. Alvarez-Palacio and J. Garcia-Sucerquia, “Lensless microscopy technique for static and dynamic colloidal systems,” J. Colloid Interface Sci. 349, 637–640 (2010). [CrossRef]
  17. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010). [CrossRef]
  18. J. Garcia-Sucerquia, W. Xu, P. Kagles, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  19. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 197, 454–487 (1949). [CrossRef]
  20. D. Gabor, “Microscopy by reconstructed wave fronts: II,” Proc. Phys. Soc. London Sect. B 64, 449–469 (1951). [CrossRef]
  21. J. F. Restrepo and J. Garcia-Sucerquia, “Diffraction-based modeling of high-numerical-aperture in-line lensless holograms,” Appl. Opt. 50, 1745–1752 (2011). [CrossRef]
  22. Y. Pu and H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. A 20, 1920–1932 (2003). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).
  24. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  25. M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).
  26. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag, 2005).
  27. J. Barton, “Photoelectron holography,” Phys. Rev. Lett. 61, 1356–1359 (1988). [CrossRef]
  28. M. H. Jericho and H. J. Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. P. Ferraro, A. Wax, and Z. Zalevvsky, eds., Springer Series in Surface Sciences (Springer, 2011), pp. 3–30.
  29. H. J. Kreuzer, “Holographic microscope and method of hologram reconstruction,” U.S. patent6,411,406 (25June2002).
  30. J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37, 752–754 (2012). [CrossRef]
  31. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). [CrossRef]
  32. F. C. Cheong, B. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010). [CrossRef]
  33. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002). [CrossRef]
  34. Y. Zhang, G. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006). [CrossRef]
  35. H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5, 87–93 (1974). [CrossRef]
  36. M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270–2279 (2004). [CrossRef]
  37. S. Kim and S. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44, 623–631 (2008). [CrossRef]
  38. F. C. Cheong, B. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited