OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A367–A376

Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions [Invited]

Sean Quirin and Rafael Piestun  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A367-A376 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of complementary engineered point spread functions is proposed for the joint tasks of depth estimation and image recovery over an extended depth of field. A digital imaging system with a dynamically adjustable pupil is demonstrated experimentally. The implementation of a broadband, passive camera is demonstrated with a fractional ranging error of 4 / 10 4 at a working distance of 1 m. Once the depth and brightness information of a scene are obtained, a synthetic camera is defined and images rendered computationally to emphasize particular features such as image focusing at different depths.

© 2012 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(110.0110) Imaging systems : Imaging systems
(150.0150) Machine vision : Machine vision

Original Manuscript: August 20, 2012
Revised Manuscript: October 19, 2012
Manuscript Accepted: October 21, 2012
Published: December 7, 2012

Sean Quirin and Rafael Piestun, "Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions [Invited]," Appl. Opt. 52, A367-A376 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Lippman, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Théor. Appl. 7, 821–825 (1908). [CrossRef]
  2. E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Machine Intell. 14, 99–106 (1992). [CrossRef]
  3. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford University Computer Science Tech Report CSTR 2005-02 (Stanford University, 2005).
  4. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001). [CrossRef]
  5. Y. Y. Schechner and N. Kiryati, “Depth from defocus vs. stereo: how different really are they?” Int. J. Comput. Vis. 39, 141–162 (2000). [CrossRef]
  6. S. Chaudhuri and A. N. Rajagopalan, Depth from Defocus: A Real Aperture Imaging Approach (Springer-Verlag, 1999).
  7. Y. Xiong and S. A. Shafer, “Depth from focusing and defocusing,” Technical report CMU-RI-TR-93-07 (Robotics Institute, Carnegie Mellon University, 1993).
  8. T. Darrell and K. Wohn, “Pyramid based depth from focus,” in Proceedings of Computer Vision and Pattern Recognition (IEEE, 1988), pp. 504–509.
  9. T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of the 17th Eurographics Conference on Rendering Techniques (Eurographics Association, 2006), pp. 263–272.
  10. S. R. P. Pavani, J. G. DeLuca, and R. Piestun, “Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system,” Opt. Express 17, 19644–19655 (2009). [CrossRef]
  11. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009). [CrossRef]
  12. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006). [CrossRef]
  13. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009). [CrossRef]
  14. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008). [CrossRef]
  15. A. Medina, F. Gaya, and F. del Pozo, “Compact laser radar and three-dimensional camera,” J. Opt. Soc. Am. A 23, 800–805 (2006). [CrossRef]
  16. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997). [CrossRef]
  17. A. P. Pentland, “A new sense for depth of field,” IEEE Trans. Pattern Anal. PAMI-9, 523–531 (1987). [CrossRef]
  18. S. K. Nayar and Y. Nakagawa, “Shape from Focus,” IEEE Trans. Pattern Anal. 16, 824–831 (1994). [CrossRef]
  19. P. Favaro and S. Soatto, 3-D Shape Estimation and Image Restoration—Exploiting Defocus and Motion Blur (Springer-Verlag, 2007).
  20. S. Ram, J. Chao, P. Prabhat, R. J. Ober, and E. S. Ward, “A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking,” Proc. SPIE 6443, 64430D (2007). [CrossRef]
  21. G. E. Johnson, E. R. Dowski, and W. T. Cathey, “Passive ranging through wave-front coding: information and application,” Appl. Opt. 39, 1700–1710 (2000). [CrossRef]
  22. A. Levin, R. Fergus, F. Durand, and B. Freeman, “Image and depth from a conventional camera with a coded aperture,” SIGGRAPH 2007 (ACM, 2007), article 70.
  23. C. Zhou, S. Lin, and S. Nayar, “Coded aperture pairs for depth from defocus,” IEEE International Conference on Computer Vision (IEEE, 2009), pp. 325–332.
  24. E. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995). [CrossRef]
  25. J. van der Gracht, E. R. Dowski, M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919–921 (1996). [CrossRef]
  26. S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16, 3484–3489 (2008). [CrossRef]
  27. G. Grover, S. R. P. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett. 35, 3306–3308 (2010). [CrossRef]
  28. R. Piestun, Y. Y. Schechner, and J. Shamir, “Propagation-invariant wave fields with finite energy,” J. Opt. Soc. Am. A 17, 294–303 (2000). [CrossRef]
  29. S. Bagheri, P. E. X. Silveira, R. Narayanswamy, and D. Pucci de Farias, “Analytical optical solution of the extension of the depth of field using cubic-phase wavefront coding. Part II. Design and optimization of the cubic phase,” J. Opt. Soc. Am. A 25, 1064–1074 (2008). [CrossRef]
  30. S. Bagheri, P. E. X. Silveira, and G. Barbastathis, “Signal-to-noise-ratio limit to the depth-of-field extension for imaging systems with an arbitrary pupil function,” J. Opt. Soc. Am. A 26, 895–908 (2009). [CrossRef]
  31. S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory (Prentice Hall, 1993).
  32. H. Barrett, C. Dainty, and D. Lara, “Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions,” J. Opt. Soc. Am. A 24, 391–414(2007). [CrossRef]
  33. S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for super-resolution microscopy with engineered point spread functions,” Proc. Natl. Acad. Sci. USA 109, 675–679 (2011). [CrossRef]
  34. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080–6092 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (271 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited