OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A433–A440

Calculation method for a quadrature phase-shifting interferometer and its applications

Suezou Nakadate, Shinya Sawada, Tomohiro Kiire, Masato Shibuya, and Toyohiko Yatagai  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A433-A440 (2013)
http://dx.doi.org/10.1364/AO.52.00A433


View Full Text Article

Enhanced HTML    Acrobat PDF (1625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A calculation method for a quadrature phase-shifting interferometer is presented, and its applications to specular and speckle interferometers and digital holography are described. Two sets of quadrature phase-shifted interferograms are acquired, and the calculation method proposed gives the phase distribution of the interferograms. The principle of the calculation method with error analysis and experimental results for specular and speckle interferometers and digital holography are also given.

© 2012 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(090.1995) Holography : Digital holography
(120.6165) Instrumentation, measurement, and metrology : Speckle interferometry, metrology

History
Original Manuscript: September 5, 2012
Revised Manuscript: November 27, 2012
Manuscript Accepted: November 27, 2012
Published: December 13, 2012

Citation
Suezou Nakadate, Shinya Sawada, Tomohiro Kiire, Masato Shibuya, and Toyohiko Yatagai, "Calculation method for a quadrature phase-shifting interferometer and its applications," Appl. Opt. 52, A433-A440 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakadate, T. Kiire, K. Shiozawa, and M. Shibuya, “Phase-shifting interferometer using two phase-shifted fringe patterns in quadrature,” Jpn. J. Opt. 33, 407–412 (2004).
  2. T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47, 4787–4792 (2008). [CrossRef]
  3. T. Kiire, S. Nakadate, and M. Shibuya, “Digital holography with a quadrature phase-shifting interferometer,” Appl. Opt. 48, 1308–1315 (2009). [CrossRef]
  4. T. Kiire, T. Yatagai, S. Nakadate, and M. Shibuya, “Quadrature phase-shifting interferometer with a polarization imaging camera,” Opt. Rev. 17, 210–213 (2010). [CrossRef]
  5. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  6. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006). [CrossRef]
  7. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45, 7610–7616 (2006). [CrossRef]
  8. M. Kronrod, N. Merzlyakov, and L. Yaroslavskii, “Reconstruction of a hologram with computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  9. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 261124 (1987). [CrossRef]
  10. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994). [CrossRef]
  11. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995). [CrossRef]
  12. S. Nakadate and H. Saito, “Fringe scanning speckle-pattern interferometry,” Appl. Opt. 24, 2172–2180 (1985). [CrossRef]
  13. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985). [CrossRef]
  14. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9, 59–61 (1984). [CrossRef]
  15. O. Y. Kwon, D. M. Shough, and R. A. Williams, “Stroboscopic phase-shifting interferometry,” Opt. Lett. 12, 855–857 (1987). [CrossRef]
  16. L. Mertz, “Complex interferometry,” Appl. Opt. 22, 1530–1534 (1983). [CrossRef]
  17. D. Colucci and P. Wizinowich, “Millisecond phase acquisition at video rates,” Appl. Opt. 31, 5919–5925 (1992). [CrossRef]
  18. R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 234361 (1984). [CrossRef]
  19. C. L. Koliopoulos, “Simultaneous phase shift interferometer,” Proc. SPIE 1531, 119–127 (1991). [CrossRef]
  20. C. L. Koliopoulos and M. Jensen, “Real-time video rate phase processor,” Proc. SPIE 2003, 264–268 (1993). [CrossRef]
  21. N. Bareket, “Three-channel phase detector for pulsed wavefront sensing,” Proc. SPIE 551, 12–16 (1985). [CrossRef]
  22. J. Roehrig, P. Ehrensberger, and M. Okamura, “High speed, large format wavefront sensor employing hexflash phase analysis,” Proc. SPIE 1163, 44–50 (1989). [CrossRef]
  23. L. Mertz, “Real-time fringe-pattern analysis,” Appl. Opt. 22, 1535–1539 (1983). [CrossRef]
  24. S. Nakadate and M. Isshiki, “Real-time fringe pattern processing and its applications,” Proc. SPIE 2544, 74–86 (1995). [CrossRef]
  25. K. Onuma, K. Tsukamoto, and S. Nakadate, “Application of real time phase shift interferometer to the measurement of concentration field,” J. Cryst. Growth 129, 706–718 (1993). [CrossRef]
  26. K. Tsukamoto, C. Li, H. Kobayashi, and T. Maki, “In situ observation of crystal growth processes under microgravity, using aircraft and drop facility,” J. Jpn. Soc. Microgravity Appl. 18, 190–196 (2001).
  27. S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid Sci. 19, 34–48 (1999). [CrossRef]
  28. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  29. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004). [CrossRef]
  30. M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
  31. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189(2008). [CrossRef]
  32. D.-I. Serrano-García, N.-I. Toto-Arellano, A. Martínez-García, and G. Rodriguez-Zurita, “Radial slope measurement of dynamic transparent samples,” J. Opt. 14, 045706 (2012). [CrossRef]
  33. D.-I. Serrano-García, N.-I. Toto-Arellano, A. Martínez-García, J.-A. Rayas-Álvarez, G. Rodriguez-Zurita, and A. Montes-Pérez, “Adjustable-window grating interferometer based on a Mach–Zehnder configuration for phase profile measurement of transparent samples,” Opt. Eng. 51, 055601 (2012). [CrossRef]
  34. D. G. Abdelsalam, B. Yao, P. Gao, J. Min, and R. Guo, “Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry,” Appl. Opt. 51, 4891–4895 (2012). [CrossRef]
  35. J. Vargas, J. A. Quiroga, C. O. S. Sorzano, J. C. Estrada, and J. M. Carazo, “Two-step interferometry by a regularized optical flow algorithm,” Opt. Lett. 36, 3485–3487 (2011). [CrossRef]
  36. J. Vargas, J. A. Quiroga, C. O. S. Sorzano, J. C. Estrada, and J. M. Carazo, “Two-step demodulation based on the Gram–Schmidt orthonormalization method,” Opt. Lett. 37, 443–445 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited