OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A45–A55

In-line hologram segmentation for volumetric samples

László Orzó, Zoltán Göröcs, András Fehér, and Szabolcs Tőkés  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A45-A55 (2013)
http://dx.doi.org/10.1364/AO.52.000A45


View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a fast, noniterative method to segment an in-line hologram of a volumetric sample into in-line subholograms according to its constituent objects. In contrast to the phase retrieval or twin image elimination algorithms, we do not aim or require to reconstruct the complex wave field of all the objects, which would be a more complex task, but only provide a good estimate about the contribution of the particular objects to the original hologram quickly. The introduced hologram segmentation algorithm exploits the special inner structure of the in-line holograms and applies only the estimated supports and reconstruction distances of the corresponding objects as parameters. The performance of the proposed method is demonstrated and analyzed experimentally both on synthetic and measured holograms. We discussed how the proposed algorithm can be efficiently applied for object reconstruction and phase retrieval tasks.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography

History
Original Manuscript: July 3, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 13, 2012
Published: October 19, 2012

Citation
László Orzó, Zoltán Göröcs, András Fehér, and Szabolcs Tőkés, "In-line hologram segmentation for volumetric samples," Appl. Opt. 52, A45-A55 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A45


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  2. J. Burns and N. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007—Europe (IEEE, 2007), pp. 1–6.
  3. P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006). [CrossRef]
  4. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011). [CrossRef]
  5. P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research 2, 1–11 (2010).
  6. M. DaneshPanah and B. Javidi, “Tracking biological microorganisms in sequence of 3D holographic microscopy images,” Opt. Express 15, 10761–10766 (2007). [CrossRef]
  7. Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010). [CrossRef]
  8. Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010). [CrossRef]
  9. F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006). [CrossRef]
  10. T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008). [CrossRef]
  11. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). [CrossRef]
  12. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef]
  13. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163–168 (2007). [CrossRef]
  14. O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002). [CrossRef]
  15. N. Shaked, Y. Zhu, M. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009). [CrossRef]
  16. J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  17. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006). [CrossRef]
  18. F. Pellistri, C. Pontiggia, L. Repetto, and E. Piano, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72, 964–967 (2004). [CrossRef]
  19. S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef]
  20. C. Oh, S. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010). [CrossRef]
  21. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Twin-image reduction in inline digital holography using an object segmentation heuristic,” J. Phys. Conf. Ser. 139, 012014 (2008). [CrossRef]
  22. B. Hennelly, D. Kelly, N. Pandey, and D. Monaghan, “Review of twin reduction and twin removal techniques in holography,” in CIICT 2009: Proceedings of the China-Ireland Information and Communications Technologies Conference (National University of Ireland, 2009), pp. 241–245.
  23. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008). [CrossRef]
  24. A. Coskun, I. Sencan, T. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510 (2010). [CrossRef]
  25. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  26. G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433(1993). [CrossRef]
  27. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
  28. P. Hariharan, Optical Holography: Principles, Techniques, and Applications (Cambridge University, 1996).
  29. C. McElhinney, B. Hennelly, L. Ahrenberg, and T. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008). [CrossRef]
  30. W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010). [CrossRef]
  31. S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011). [CrossRef]
  32. I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009).
  33. J. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  34. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009). [CrossRef]
  35. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008). [CrossRef]
  36. L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in Proceedings of IEEE Conference on Cellular Nanoscale Networks and Their Applications (CNNA) (IEEE, 2010), pp. 1–4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1413 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited