OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 10 — Apr. 1, 2013
  • pp: 2038–2041

High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber

Le Xu, Lan Jiang, Sumei Wang, Benye Li, and Yongfeng Lu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 10, pp. 2038-2041 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study proposes a high-temperature sensor based on an abrupt fiber-taper Michelson interferometer (FTMI) in single-mode fiber fabricated by a fiber-taper machine and electric-arc discharge. The proposed FTMI is applied to measure temperature and refractive index (RI). A high temperature sensitivity of 118.6pm/°C is obtained in the temperature range of 500°C–800°C. The wavelength variation is only 0.335nm for the maximum attenuation peak, with the external RI changed from 1.333 to 1.3902, which is desirable for high-temperature sensing to eliminate the cross sensitivity to RI.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 3, 2013
Revised Manuscript: February 26, 2013
Manuscript Accepted: February 26, 2013
Published: March 22, 2013

Le Xu, Lan Jiang, Sumei Wang, Benye Li, and Yongfeng Lu, "High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber," Appl. Opt. 52, 2038-2041 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005). [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef]
  3. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995). [CrossRef]
  4. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004). [CrossRef]
  5. B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012). [CrossRef]
  6. T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671(2009). [CrossRef]
  7. Y. Li, Y. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010). [CrossRef]
  8. L. Jiang, J. Yang, S. Wang, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011). [CrossRef]
  9. G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993). [CrossRef]
  10. X. Chen, K. Zhou, L. Zhang, and L. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44, 178–182 (2005). [CrossRef]
  11. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012). [CrossRef]
  12. Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30, 711–713 (2005). [CrossRef]
  13. Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105–1107 (2008). [CrossRef]
  14. Z. Tian, M. Nix, and S. H. S. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett. 34, 229–231 (2009). [CrossRef]
  15. B. Dong, L. Wei, and D. P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48, 6466–6469 (2009). [CrossRef]
  16. T. Allsop, R. Reeves, D. J. Webb, and I. Bennion, “A high sensitivity refractometer based upon along period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002). [CrossRef]
  17. B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011). [CrossRef]
  18. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper,” Opt. Lett. 32, 1974–1976 (2007). [CrossRef]
  19. C. Belleville, and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited