OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 10 — Apr. 1, 2013
  • pp: 2102–2115

Postanalyses of an optical multilayer interference filter using numerical reverse synthesis and Rutherford backscattering spectrometry

Naba Kishore Sahoo, Sanjiv Kumar, Raj Bahadur Tokas, Shuvendu Jena, Sudhakar Thakur, and Gundlapally Laxmi Narasimha Reddy  »View Author Affiliations


Applied Optics, Vol. 52, Issue 10, pp. 2102-2115 (2013)
http://dx.doi.org/10.1364/AO.52.002102


View Full Text Article

Enhanced HTML    Acrobat PDF (3219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Post nondestructive analyses of an all-dielectric multilayer Fabry–Perot interference filter developed through a reactive electron beam deposition process have been carried out through numerical reverse engineering of transmission spectra, Rutherford backscattering spectroscopy and quartz crystal monitoring data to derive multilayer geometry, deposited layer thicknesses, densities, refractive indices, compositions, and stoichiometry. These techniques are collectively used to fulfill the missing links with complementary and some supplementary information to inverse synthesize the multilayer geometry. During this investigation it is distinctly understood that the factors associated with real-time deposition have significantly influenced the microscopic parameters, namely, the densities and refractive indices of TiO2 and SiO2 layers. This in turn influenced the layers’ geometric (physical) thicknesses during automated quarter-wave optical layer monitoring and consequently affected the experimental spectral characteristics. The role of oxygen has been observed to be significant in controlling the mass densities of these refractory oxide layers. It is further noticed that the layer density values have been significantly perturbed whether the associated TiO2 or SiO2 oxide dielectric films are substoichiometric (oxygen-deficient), stoichiometric, or superstoichiometric (oxygen-enriched).

© 2013 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(310.5696) Thin films : Refinement and synthesis methods

ToC Category:
Thin Films

History
Original Manuscript: January 7, 2013
Revised Manuscript: February 17, 2013
Manuscript Accepted: February 21, 2013
Published: March 27, 2013

Citation
Naba Kishore Sahoo, Sanjiv Kumar, Raj Bahadur Tokas, Shuvendu Jena, Sudhakar Thakur, and Gundlapally Laxmi Narasimha Reddy, "Postanalyses of an optical multilayer interference filter using numerical reverse synthesis and Rutherford backscattering spectrometry," Appl. Opt. 52, 2102-2115 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-10-2102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Lissberger, “Optical applications of dielectric thin films,” Rep. Prog. Phys. 33, 197–268 (1970). [CrossRef]
  2. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2-SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002). [CrossRef]
  3. G. M. Harry, H. Armandula, E. Black, D. R. M. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, “Thermal noise from optical coatings in gravitational wave detectors,” Appl. Opt. 45, 1569–1574 (2006). [CrossRef]
  4. G. J. Ockenfuss and R. E. Klinger, “Ultra-low-stress thin-film interference filters,” Appl. Opt. 45, 1364–1367 (2006). [CrossRef]
  5. G. J. Hawkins, R. E. Sherwood, B. M. Barrett, M. Wallace, H. J. B. Orr, K. Matthews, and S. Bisht, “High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D),” Appl. Opt. 47, 2346–2356 (2008). [CrossRef]
  6. J. Ciosek, “Narrow-band interference filters with unconventional spacer layers,” Appl. Opt. 39, 135–140 (2000). [CrossRef]
  7. A. N. Kireev and O. J. F. Martin, “Real-time Java simulations of multiple interference dielectric filters,” Comput. Phys. Commun. 179, 903–907 (2008). [CrossRef]
  8. J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244–1250 (1999). [CrossRef]
  9. R. Arsenault and G. Boivin, “Fabrication of metal-dielectric interference filters: a simple method,” Appl. Opt. 16, 1890–1892 (1977). [CrossRef]
  10. A. R. Kumar, V. A. Boychev, Z. M. Zhang, and D. B. Tanner, “Fabry–Perot resonators built With YBa2Cu3O7−δ films on Si substrates,” J. Heat Transfer 122, 785–791 (2000). [CrossRef]
  11. D. Y. Hsu, J. W. Lin, and S. Y. Shaw, “Wide-range tunable Fabry–Perot array filter for wavelength-division multiplexing applications,” Appl. Opt. 44, 1529–1532 (2005). [CrossRef]
  12. W. Wang, “Reflection and transmission properties of holographic mirrors and holographic Fabry–Perot filters. III. Holographic Fabry–Perot filters,” Appl. Opt. 33, 7883–7894 (1994). [CrossRef]
  13. Y. J. Lee, J. H. Lee, and Y. S. Kim, “Interdiffusion effects in all-dielectric Fabry–Perot filters,” J. Korean Phys. Soc. 30, 550–556 (1997).
  14. C. Grezes-Besset, R. Richier, and E. Pelletier, “Layer uniformity obtained by vacuum evaporation: application to Fabry–Perot filters,” Appl. Opt. 28, 2960–2964 (1989). [CrossRef]
  15. R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984). [CrossRef]
  16. J. E. Yehoda and R. Messier, “Are thin film physical structure fractals?” Appl. Surface Sci. 22/23, 590–595 (1985). [CrossRef]
  17. B. Vidal, A. Fornier, and E. Pelletier, “Optical monitoring of non-quarterwave multilayer filters,” Appl. Opt. 17, 1038–1047 (1978). [CrossRef]
  18. O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008). [CrossRef]
  19. M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45, 1502–1506 (2006). [CrossRef]
  20. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008). [CrossRef]
  21. A. V. Tikhonravov and M. K. Trubetskov, “Elimination of cumulative effect of thickness errors in monochromatic monitoring of optical coating production: theory,” Appl. Opt. 46, 2084–2090 (2007). [CrossRef]
  22. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007). [CrossRef]
  23. R. F. Oulton and C. S. Adjiman, “Global optimization and modeling techniques for planar multilayered dielectric structures,” Appl. Opt. 45, 5910–5922 (2006). [CrossRef]
  24. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational experiments on optical coating production using monochromatic monitoring strategy aimed at eliminating a cumulative effect of thickness errors,” Appl. Opt. 46, 6936–6944 (2007). [CrossRef]
  25. N. K. Sahoo, S. Thakur, R. B. Tokas, and N. M. Kamble, “Relative performances of effective medium formulations in interpreting specific composite thin films optical properties,” Appl. Surface Sci. 253, 6787–6799 (2007). [CrossRef]
  26. F. Lai, X. Wu, B. Zhuang, Q. Yan, and Z. Huang, “Dual wavelengths monitoring for optical coatings,” Opt. Express 16, 9436–9442 (2008). [CrossRef]
  27. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007). [CrossRef]
  28. R. R. Willey, “Non-turning-point monitoring improves narrow bandpass filters,” Appl. Opt. 48, 3277–3283 (2009). [CrossRef]
  29. C.-C. Lee, C.-C. Kuo, and S.-H. Chen, “Influence of monitor passband width on the layer thickness determination during deposition of a dense-wavelength-division-multiplexing filter,” Appl. Opt. 45, 1344–1348 (2006). [CrossRef]
  30. R. R. Willey, “Monitoring error compensation in general optical coatings,” Appl. Opt. 48, 4475–4482 (2009). [CrossRef]
  31. B. Bobbs and J. E. Rudisill, “Optical monitoring of nonquarterwave film thicknesses using a turning point method,” Appl. Opt. 26, 3136–3139 (1987). [CrossRef]
  32. J. F. Power, “Inverse problem theory in the optical depth profilometry of thin films,” Rev. Sci. Instrum. 73, 4057–4141 (2002). [CrossRef]
  33. N. K. Sahoo, “Multilayer inverse synthesis techniques for the analysis of mixed-mode inhomogeneities in composite and co-deposited dielectric coatings,” Vacuum 60, 411–417 (2001). [CrossRef]
  34. J. A. Dobrowolski, F. C. Ho, L. Baby, R. Boulay, B. Drouin, R. Gagnon, and P. A. Belanger, “Use of the inverse synthesis method for the determination of the optical constants of paper in the far infrared,” Appl. Opt. 25, 2681–2687 (1986). [CrossRef]
  35. J. A. Dobrowolski, F. C. Ho, and A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983). [CrossRef]
  36. J. A. Dobrowolski, F. C. Ho, A. Belkind, and V. A. Koss, “Merit functions for more effective thin film calculations,” Appl. Opt. 28, 2824–2831 (1989). [CrossRef]
  37. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, “New optimization algorithm for the synthesis of rugate optical coatings,” Appl. Opt. 45, 1515–1524 (2006). [CrossRef]
  38. N. K. Sahoo and K. V. S. R. Apparao, “Modified complex method for constrained design and optimization of optical multilayer thin-film devices,” Appl. Phys. A 59, 317–326 (1994). [CrossRef]
  39. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007). [CrossRef]
  40. J. A. Dobrowolski and R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990). [CrossRef]
  41. F. Demichelis, E. Mezzetti-Minetti, L. Tallone, and E. Tresso, “Optimization of optical parameters and electric field distribution in multilayers,” Appl. Opt. 23, 165–171 (1984). [CrossRef]
  42. T. Boudet, M. Berger, O. Lartigue, and B. Hirrien, “Optical and x-ray characterization applied to multilayer reverse engineering,” Opt. Eng. 37, 2175–2181 (1998). [CrossRef]
  43. M. Jerman, Z. Qiao, and D. Mergel, “Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films’ mass density,” Appl. Opt. 44, 3006–3012 (2005). [CrossRef]
  44. S. Ogura, N. Sugawara, and R. Hiraga, “Refractive index and packing density for MgF2 films: correlation of temperature dependence with water sorption,” Thin Solid Films 30, 3–10 (1975). [CrossRef]
  45. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981). [CrossRef]
  46. R. Vlastou, E. Fokitis, S. Maltezos, G. Kalliabakos, M. Kokkoris, and E. Kossionides, “Characterization of optical UV filters using Rutherford backscattering spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 161–163, 590–594 (2000). [CrossRef]
  47. X. Yao, C. Xiong, C. Yang, and N. Tong, “Applications of reverse engineering in the fabrication of optical coatings with high performance,” Proc. SPIE 6034, 60341I (2005). [CrossRef]
  48. A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. 41, 3176–3182 (2002). [CrossRef]
  49. C. J. v. d. Laan and H. J. Frankena, “Fast computation method for derivatives of multilayer stack reflectance,” Appl. Opt. 17, 538–541 (1978). [CrossRef]
  50. K.-O. Peng and M. R. de la Fonteijne, “Derivatives of transmittance and reflectance for an absorbing multilayer stack,” Appl. Opt. 24, 501–503 (1985). [CrossRef]
  51. R. R. Willey, “Simulation of errors in the monitoring of narrow bandpass filters,” Appl. Opt. 41, 3193–3195 (2002). [CrossRef]
  52. M. Kildemo, R. Brenot, and B. Drévillon, “Spectroellipsometric method for process monitoring semiconductor thin films and interfaces,” Appl. Opt. 37, 5145–5149 (1998). [CrossRef]
  53. P. H. Lissberger, “Sources of error in the modulated wavelength optical thickness monitor for dielectric layers,” J. Phys. E 2, 875–879 (1969). [CrossRef]
  54. R. Rabady, K. Zinoviev, and I. Avrutsky, “High-resolution photometric optical monitoring for thin-film deposition,” Appl. Opt. 43, 143–148 (2004). [CrossRef]
  55. B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000). [CrossRef]
  56. F. J. Van Milligen, B. Bovard, M. R. Jacobson, J. Mueller, R. Potoff, R. L. Shoemaker, and H. A. Macleod, “Development of an automated scanning monochromator for monitoring thin films,” Appl. Opt. 24, 1799–1802 (1985). [CrossRef]
  57. P. B. Clapham, M. J. Downs, and K. W. Raine, “Quartz crystal monitoring for optical thin films,” Thin Solid Films 4, R39–R42 (1969). [CrossRef]
  58. D. K. Kaushik, S. K. Chattopadhyaya, and N. Kath, “Thin film thickness monitoring using a doubly oscillating quartz crystal and measurement of growth rate,” J. Phys. E 14, 345–348 (1981). [CrossRef]
  59. C.-S. Lu, “Mass determination with piezoelectric quartz crystal resonators,” J. Vac. Sci. Technol. 12, 578–583 (1975). [CrossRef]
  60. A. Wajid, “On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions,” Sens. Actuators A 63, 41–46 (1997). [CrossRef]
  61. D. Mergel, “Modeling thin TiO2 films of various densities as an effective optical medium,” Thin Solid Films 397, 216–222 (2001). [CrossRef]
  62. K. Abeysuriya and I. J. Hodgkinson, “Plate-void model for thin-film form birefringence,” J. Opt. Soc. Am. A 5, 1549–1553 (1988). [CrossRef]
  63. J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005). [CrossRef]
  64. E. E. Khawaja, S. M. A. Durrani, and M. A. Daous, “Depth profiling of inhomogeneous zirconia films by optical and Rutherford backscattering spectrometric techniques,” J. Phys. D 32, 388–394 (1999). [CrossRef]
  65. V. Torres-Costa, F. Pászti, A. Climent-Font, R. J. Martín-Palma, and J. M. Martínez-Duart, “RBS characterization of porous silicon multilayer interference filters,” Electrochem. Solid-State Lett. 7, G244–G246 (2004). [CrossRef]
  66. J. N. Musher and R. G. Gordon, “Atmospheric pressure chemical vapor deposition of TiN from tetrakis (dimethylamido) titanium and ammonia,” J. Mater. Res. 11, 989–1001 (1996). [CrossRef]
  67. M. Laube, F. Rauch, C. Ottermann, O. Anderson, and K. Bange, “Density of thin TiO2 films,” Nucl. Instrum. Methods Phys. Res. B 113, 288–292 (1996). [CrossRef]
  68. Y. Zhang, L. Giordano, and G. Pacchioni, “Structure, composition, and electronic properties of TiOx/Mo (112) Thin Films,” J. Phys. Chem. C 111, 7437–7445 (2007). [CrossRef]
  69. P. W. Murray, N. G. Condon, and G. Thornton, “Effect of stoichiometry on the structure of TiO2 (110),” Phys. Rev. B 51, 10989–10997 (1995). [CrossRef]
  70. K. Bange, “Characterization of oxide coatings on glass,” Anal. Bioanal. Chem. 353, 240–245 (1995). [CrossRef]
  71. H. Sakurai and S. Kato, “Theoretical study of the metal oxidation reaction Ti+O2→TiO+O: ab initio calculation of the potential energy surface and classical trajectory analysis,” J. Phys. Chem. A 106, 4350–4357 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited