OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 10 — Apr. 1, 2013
  • pp: 2116–2124

Investigation of basal cell carcinoma using dynamic focus optical coherence tomography

Mohammad R. N. Avanaki, Ali Hojjatoleslami, Mano Sira, John B. Schofield, Carole Jones, and Adrian Gh. Podoleanu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 10, pp. 2116-2124 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1404 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography (OCT) is becoming a popular modality for skin tumor diagnosis and assessment of tumor size and margin status. We conducted a number of imaging experiments on periocular basal cell carcinoma (BCC) specimens using an OCT configuration. This configuration employs a dynamic focus (DF) procedure where the coherence gate moves synchronously with the peak of the confocal gate, which ensures better signal strength and preservation of transversal resolution from all depths. A DF-OCT configuration is used to illustrate morphological differences between the BCC and its surrounding healthy skin in OCT images. The OCT images are correlated with the corresponding histology images. To the best of our knowledge, this is the first paper to look at DF-OCT imaging in examining periocular BCC.

© 2013 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Imaging Systems

Original Manuscript: November 8, 2012
Revised Manuscript: February 16, 2013
Manuscript Accepted: February 21, 2013
Published: March 29, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Mohammad R. N. Avanaki, Ali Hojjatoleslami, Mano Sira, John B. Schofield, Carole Jones, and Adrian Gh. Podoleanu, "Investigation of basal cell carcinoma using dynamic focus optical coherence tomography," Appl. Opt. 52, 2116-2124 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. W. Jung, A. I. Metelitsa, D. C. Dover, and T. G. Salopek, “Trends in incidence of nonmelanoma skin cancers in Alberta, Canada, 1988–2007,” Br. J. Dermatol. 163, 146–154 (2010). [CrossRef]
  2. E. B. Russell, P. R. Carrington, and B. R. Smoller, “Basal cell carcinoma: a comparison of shave biopsy versus punch biopsy techniques in subtype diagnosis,” J. Am. Acad. Dermatol. 41, 69–71 (1999). [CrossRef]
  3. T. Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms, “Classification of melanocytic lesions with color and texture analysis using digital image processing,” Anal. Quant. Cytol. Histol. 15, 1–11 (1993).
  4. N. Kollias and G. N. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” Journal Investig. Dermatol. Symp. Proc. 7, 64–75 (2002). [CrossRef]
  5. G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions—a valuable tool for early diagnosis of melanoma,” Lancet Oncol. 2, 443–449 (2001).
  6. C. Massone, A. Di Stefani, and H. P. Soyer, “Dermoscopy for skin cancer detection,” Curr. Opin. Oncol. 17, 147–153 (2005).
  7. SkinCancerNet, http://www.skincarephysicians.com/skincancernet/dermoscope.html , last accessed November (2010).
  8. L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley, “Segmentation of skin cancer images,” Image Vision Comput. 17, 65–74 (1999). [CrossRef]
  9. S. Cotton and E. Claridge, “Developing a predictive model of human skin coloring,” Proc. SPIE 2708, 814–825 (1996). [CrossRef]
  10. J. K. Patel, S. Konda, O. A. Perez, S. Amini, G. Elgart, and B. Berman, “Newer technologies/techniques and tools in the diagnosis of melanoma,” Eur. J. Dermatol. 18, 617–631 (2008).
  11. A. Dancey, B. Mahon, and S. Rayatt, “A review of diagnostic imaging in melanoma,” J. Plast. Reconstr. Aesthet. Surg. 61, 1275–1283 (2008). [CrossRef]
  12. A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107, 193–200 (2006). [CrossRef]
  13. M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999). [CrossRef]
  14. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995). [CrossRef]
  15. K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern, “Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy,” Melanoma Res. 12, 349–355 (2002). [CrossRef]
  16. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards‐Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser‐scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77, 550–555 (2003). [CrossRef]
  17. E. Gratton and M. J. vandeVen, “Laser sources for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 69–98.
  18. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987). [CrossRef]
  19. S. DeMaggio, “Running and setting up a confocal microscope core facility, biological applications of confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic, 2002), Vol. 70, pp. 475–486.
  20. M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009). [CrossRef]
  21. A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012). [CrossRef]
  22. M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjatoleslami, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013). [CrossRef]
  23. M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Gh. Podoleanu, “Algorithm for excitation optimization of Fabry–Pérot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013). [CrossRef]
  24. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012). [CrossRef]
  25. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997). [CrossRef]
  26. M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009). [CrossRef]
  27. M. Hughes, “Optical coherence tomography for art conservation and archaeology: methods and applications,” Ph.D. thesis (University of Kent, 2010).
  28. D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
  29. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004). [CrossRef]
  30. J. Weissman, T. Hancewicz, and P. Kaplan, “Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis,” Opt. Express 12, 5760–5769 (2004). [CrossRef]
  31. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001). [CrossRef]
  32. T. B. Fitzpatrick, “Soleil et pau,” J. Med. Aesthetics 2, 33–34 (1975).
  33. T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci. 45, 167–173 (2007). [CrossRef]
  34. N. Dhingra, A. Gajdasty, J. W. Neal, A. N. Mukherjee, and C. M. Lane, “Confident complete excision of lid-margin BCCs using a marginal strip: an alternative to Mohs’ surgery,” Br. J. Ophthalmol. 91, 794–796 (2007). [CrossRef]
  35. M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J(2012). [CrossRef]
  36. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).
  37. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “Dynamic focus optical coherence tomography: Feasibility for improved basal cell carcinoma investigation,” in Proceedings of 34th Annual Conference of the European Academy of Facial Plastic Surgery (EAFPS) (Academy of Facial Plastic Surgery, 2011), p. 54.
  38. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. G. Podoleanu, “En-face dynamic focus optical coherence tomography to study BCC,” in Proceedings of Microscopy Conference 2011 (MC2011)(Academy of Facial Plastic Surgery, 2011), p. 44/L1.P303.
  39. B. R. Penmetsa, M. Khandwala, A. Bradu, M. Hughes, C. A. Jones, J. Schofield, and A. G. Podoleanu, “Imaging of basal cell carcinoma tissue using en-face OCT,” Proc. SPIE 7139, 71390J (2008). [CrossRef]
  40. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010). [CrossRef]
  41. J. Holmes, “Theory & applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008). [CrossRef]
  42. G. M. H. M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
  43. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001). [CrossRef]
  44. M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of International Conference on Microscopy and Microscience 2010 (2010), p. 152.
  45. J. Schmitt, G. Zhou, E. Walker, and R. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited