OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 10 — Apr. 1, 2013
  • pp: 2136–2144

Algebraic and numerical analysis of imaging properties of thin tunable-focus fluidic membrane lenses with parabolic surfaces

Antonin Miks, Jiri Novak, and Pavel Novak  »View Author Affiliations

Applied Optics, Vol. 52, Issue 10, pp. 2136-2144 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (590 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theory of third-order aberrations for a system of rotationally symmetric thin tunable-focus fluidic membrane lenses with parabolic surfaces is described. A complex analysis of the third-order design of tunable fluidic lenses is performed considering all types of primary aberrations. Moreover, formulas are derived for the calculation of the change of aberration coefficients of the parabolic tunable fluidic membrane lens with respect to the wavelength. It is shown that spherical aberration of a simple tunable-focus fluidic membrane lens with parabolic surfaces can be corrected, which is not possible with a classical spherical lens. The presented analysis is explained on examples. Derived formulas make possible to calculate parameters of optical systems with fluidic membrane lenses with small residual aberrations.

© 2013 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(110.0110) Imaging systems : Imaging systems
(220.1010) Optical design and fabrication : Aberrations (global)
(220.3620) Optical design and fabrication : Lens system design
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: January 3, 2013
Revised Manuscript: February 16, 2013
Manuscript Accepted: February 21, 2013
Published: March 29, 2013

Antonin Miks, Jiri Novak, and Pavel Novak, "Algebraic and numerical analysis of imaging properties of thin tunable-focus fluidic membrane lenses with parabolic surfaces," Appl. Opt. 52, 2136-2144 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010). [CrossRef]
  2. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000). [CrossRef]
  3. B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005). [CrossRef]
  4. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  5. C.-X. Liu, J. Park, and J.-W. Choi, “A planar lens based on electrowetting of two immiscible liquids,” J. Micromech. Microeng. 18, 035023 (2008). [CrossRef]
  6. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979). [CrossRef]
  7. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004). [CrossRef]
  8. H. W. Ren and S.-T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646–2652 (2008). [CrossRef]
  9. X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93, 151101 (2008). [CrossRef]
  10. G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1971). [CrossRef]
  11. N. Sugiura and S. Morita, “Variable-focus liquid-filled optics lens,” Appl. Opt. 32, 4181–4186 (1993). [CrossRef]
  12. A. H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt. 35, 1587–1589 (1996). [CrossRef]
  13. N. Chronis, G. Liu, K.-H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003). [CrossRef]
  14. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003). [CrossRef]
  15. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004). [CrossRef]
  16. M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665–1673 (2004). [CrossRef]
  17. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1 kHz bandwidth,” Opt. Express 12, 2138–2149 (2004). [CrossRef]
  18. R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2005). [CrossRef]
  19. K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett. 91, 171111 (2007). [CrossRef]
  20. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007). [CrossRef]
  21. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47, 3658–3668 (2008). [CrossRef]
  22. G.-H. Feng and Y.-C. Chou, “Flexible meniscus/biconvex lens system with fluidic-controlled tunable-focus applications,” Appl. Opt. 48, 3284–3290 (2009). [CrossRef]
  23. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007). [CrossRef]
  24. H. W. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006). [CrossRef]
  25. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007). [CrossRef]
  26. D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46, 123002 (2007). [CrossRef]
  27. D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46, 024002 (2007). [CrossRef]
  28. D. Shaw and C.-W. Lin, “Coma compensation of o-ring driven liquid-filled lenses,” Opt. Rev. 16, 129–132 (2009). [CrossRef]
  29. H. Choi, D. S. Han, and Y. H. Won, “Adaptive double-sided fluidic lens of polydimethylsiloxane membranes of matching thickness,” Opt. Lett. 36, 4701–4703 (2011). [CrossRef]
  30. R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005). [CrossRef]
  31. L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011). [CrossRef]
  32. L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012). [CrossRef]
  33. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010). [CrossRef]
  34. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 728–731.
  35. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009). [CrossRef]
  36. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011). [CrossRef]
  37. Y.-K. Fuh, M.-X. Lin, and S. Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Lasers Eng. 50, 1677–1682 (2012). [CrossRef]
  38. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  39. A. Miks, J. Novak, and P. Novak, “Third-order design of aspheric spectacle lenses,” Optik 121, 2097–2104 (2010). [CrossRef]
  40. H. H. Emsley, Aberrations of Thin Lenses (Constable & Co., 1956).
  41. A. Miks, “Modification of the formulas for third-order aberration coefficients,” J. Opt. Soc. Am. A 19, 1867–1871 (2002). [CrossRef]
  42. J. A. Diaz, “Primary aberrations of a thin lens with standard aspheres,” Proc. SPIE 5249, 599–607 (2003). [CrossRef]
  43. W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic, 1974).
  44. H. Coddington, A Treatise on the Reflexion and Refraction of Light (Cambridge, 1829).
  45. H. H. Hopkins, Wave Theory of Aberrations (Clarendon, 1950).
  46. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1964).
  47. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd. ed. (McGraw-Hill, 1970).
  48. D. Malacara, ed., Optical Shop Testing (Wiley-Interscience, 2007).
  49. http://www.dowcorning.com/ .
  50. http://www.gesilicones.com/ .
  51. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008). [CrossRef]
  52. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151, 95–99 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited