OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 10 — Apr. 1, 2013
  • pp: 2173–2186

Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principal component analysis

Martin de Graaf, Arnoud Apituley, and David P. Donovan  »View Author Affiliations


Applied Optics, Vol. 52, Issue 10, pp. 2173-2186 (2013)
http://dx.doi.org/10.1364/AO.52.002173


View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is introduced to derive integral properties of the aerosol size distribution, e.g., aerosol mass, from tropospheric multiwavelength Raman lidar aerosol extinction and backscatter data, using an adapted form of the principal component analysis (PCA) technique. Since the refractive index of general tropospheric aerosols is variable and aerosol types can vary within one profile, an inversion technique applied in the troposphere should account for varying aerosol refractive indices. Using PCA, if a sufficiently complete set of appropriate refractive index dependent kernels is used, no a priori information about the aerosol type is necessary for the inversion of integral properties. In principle, the refractive index itself can be retrieved, but this quantity is more sensitive to measurement errors than the various integral properties of the aerosol size distribution. Here, the PCA technique adapted for use in the troposphere is introduced, the refractive index information content of the kernel sets is investigated, and error analyses are presented. The technique is then applied to actual tropospheric Raman lidar measurements.

© 2013 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3640) Atmospheric and oceanic optics : Lidar
(140.3550) Lasers and laser optics : Lasers, Raman
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 19, 2012
Revised Manuscript: February 14, 2013
Manuscript Accepted: February 20, 2013
Published: March 29, 2013

Citation
Martin de Graaf, Arnoud Apituley, and David P. Donovan, "Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principal component analysis," Appl. Opt. 52, 2173-2186 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-10-2173


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715–737 (2005). [CrossRef]
  2. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2001, The Scientific Basis (Cambridge University, 2001).
  3. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef]
  4. G. Pappalardo, U. Wandinger, L. Mona, A. Hiebsch, I. Mattis, A. Amodeo, A. Ansmann, P. Seifert, H. Linn’e, A. Apituley, L. Alados Arboledas, D. Balis, A. Chaikovsky, G. D’Amico, F. De Tomasi, V. Freudenthaler, E. Giannakaki, A. Giunta, I. Grigorov, M. Iarlori, F. Madonna, R.-E. Mamouri, L. Nasti, A. Papayannis, A. Pietruczuk, M. Pujadas, V. Rizi, F. Rocadenbosch, F. Russo, F. Schnell, N. Spinelli, X. Wang, and M. Wiegner, “Earlinet correlative measurements for calipso: first intercomparison results,” J. Geophys. Res.115, D00H19 (2010). [CrossRef]
  5. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef]
  6. S. A. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, 1977).
  7. G. K. Yue, L. W. Thomason, L. R. Poole, P.-H. Wang, D. Baumgardner, and J. E. Dye, “Aerosol surface areas deduced from early 1993 sage II data and comparisons with stratospheric photochemistry, aerosols, and dynamics expedition measurements,” Geophys. Res. Lett. 22, 2933–2936 (1995). [CrossRef]
  8. L. W. Thomason and M. T. Osborn, “Lidar conversion parameters derived from sage II extinction measurements,” Geophys. Res. Lett. 19, 1655–1658 (1992). [CrossRef]
  9. L. W. Thomason and L. R. Poole, “Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes,” J. Geophys. Res. 98, 23003–23012 (1993). [CrossRef]
  10. D. P. Donovan and A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36, 9406–9424 (1997). [CrossRef]
  11. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999). [CrossRef]
  12. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002). [CrossRef]
  13. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004). [CrossRef]
  14. A. Kolgotin and D. Müller, “Theory of inversion with two-dimensional regularization: profiles of microphysical particle properties derived from multiwavelength lidar measurements,” Appl. Opt. 47, 4472–4490 (2008). [CrossRef]
  15. I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012). [CrossRef]
  16. M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  17. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  18. K. Kandler, L. Schütz, C. Deutscher, M. Ebert, H. Hofmann, S. Jäckel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus, Ser. B 61, 32–50 (2009). [CrossRef]
  19. A. Petzold, M. Esselborn, B. Weinzierl, G. Ehret, A. Ansmann, D. Müller, D. Donovan, G.-J. van Zadelhoff, S. Berthier, M. Wiegner, J. Gasteiger, R. Buras, B. Mayer, D. Lajas, and T. Wehr, “ICAROHS inter-comparison of aerosol retrievals and observational requirements for multi-wavelength HSRL systems,” in Proceedings of the ESA Living Planet Symposium 2010, H. Lacoste-Francis, ed., Vol. SP-686 (European Space Agency, 2010), p. 102.
  20. M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus, Ser. B 61, 180–194 (2005).
  21. L. Mona, Z. Liu, D. Müller, A. Omar, A. Papayannis, G. Pappalardo, N. Sugimoto, and M. Vaughan, “Lidar measurements for desert dust characterization: an overview,” Advanc. Meteor. 2012, 356265 (2012). [CrossRef]
  22. M. de Graaf, D. Donovan, and A. Apituley, “Refractive index and integral aerosol properties retrieval from Raman lidar data using principal component analysis,” in 24th International Laser Radar Conference—Reviewed and Revised Papers, Boulder, Colorado, 23–27 June2008.
  23. A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling (ISTP 8), Delft, 18–23 October2009.
  24. R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009). [CrossRef]
  25. F. Russo, D. N. Whiteman, B. Demoz, and R. M. Hoff, “Validation of the Raman lidar algorithm for quantifying aerosol extinction,” Appl. Opt. 45, 7073–7088 (2006). [CrossRef]
  26. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turnkey Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  27. R. R. Draxler, “Evaluation of an ensemble dispersion calculation,” J. Appl. Meteorol. Climatol. 42, 308–317 (2003). [CrossRef]
  28. S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012). [CrossRef]
  29. M. de Graaf, D. P. Donovan, and A. Apituley, “Saharan desert dust microphysical properties from principal component analysis (PCA) inversion of Raman lidar data over western Europe,” in Proceedings of the 25th International Lidar Radar Conference (ILRC25), St. Petersburg, Russia, 5–9 July2010.
  30. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus, Ser. B 61, 165–179 (2009). [CrossRef]
  31. S. Nickovic, G. Kallas, A. Papadopoulos, and O. Kakaliagou, “A model for prediction of desert dust cycle in the atmosphere,” J. Geophys. Res. 106, 18113–18129 (2001). [CrossRef]
  32. M. de Graaf, D. Donovan, and A. Apituley, “Aerosol microphysical properties from inversion of tropospheric optical Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling, Delft, The Netherlands, 18–23 October2009.
  33. D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res.112, D16202 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited