OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 10 — Apr. 1, 2013
  • pp: 2194–2199

Investigations on the catastrophic damage in multilayer dielectric films

Xiaofeng Liu, Yuan’an Zhao, Yanqi Gao, Dawei Li, Guohang Hu, Meiping Zhu, Zhengxiu Fan, and Jianda Shao  »View Author Affiliations


Applied Optics, Vol. 52, Issue 10, pp. 2194-2199 (2013)
http://dx.doi.org/10.1364/AO.52.002194


View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

HfO2/SiO2 coatings are always fluence-limited by a class of rare catastrophic failures induced by a nanosecond laser with a wavelength of 1053 nm. The catastrophic damage in HfO2/SiO2 coatings behaves as the damage growth with repeated laser irradiation, and thus eventually limits the mirror performance. Understanding the damage processes and mechanisms associated with the catastrophic damage are important for reducing the occurrence of the catastrophic failure and allowing the HfO2/SiO2 coatings to survive at the high fluence required by high laser systems. The rough damage behavior of the catastrophic failure at the proper critical fluence is present. The pit and delamination in the catastrophic failure are investigated to find the possible reasons leading to the catastrophic failure. The experimental results indicate that nodular defect originated from the substrate easily incurs the catastrophic damage. The electric field enhancements of the pit and the substrate impurities may contribute to this phenomenon. The delamination is always present on the left of the pit when laser irradiates from left to right at oblique incidence, which may be related to the plasma plume toward the laser incidence.

© 2013 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(240.0310) Optics at surfaces : Thin films
(310.1620) Thin films : Interference coatings

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 11, 2012
Manuscript Accepted: February 1, 2013
Published: March 29, 2013

Citation
Xiaofeng Liu, Yuan’an Zhao, Yanqi Gao, Dawei Li, Guohang Hu, Meiping Zhu, Zhengxiu Fan, and Jianda Shao, "Investigations on the catastrophic damage in multilayer dielectric films," Appl. Opt. 52, 2194-2199 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-10-2194


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996). [CrossRef]
  2. F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997). [CrossRef]
  3. X. F. Liu, Y. A. Zhao, D. Li, G. Hu, Y. Gao, Z. Fan, and J. Shao, “Characteristics of plasma scalds in multilayer dielectric films,” Appl. Opt. 50, 4226–4231 (2011). [CrossRef]
  4. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings,” Appl. Opt. 50, C373–C381 (2011). [CrossRef]
  5. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011). [CrossRef]
  6. C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999). [CrossRef]
  7. S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999). [CrossRef]
  8. X. B. Cheng, Z. X. Shen, H. F. Jiao, and J. L. Zhang, “Laser damage study of nodules in electron-beam evaporated HfO2/SiO2 high reflectors,” Appl. Opt. 50, C357–C363 (2011). [CrossRef]
  9. C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997). [CrossRef]
  10. X. F. Liu, D. W. Li, Y. A. Zhao, and X. Li, “Further investigation on the damage characteristic of nodular defects,” Appl. Opt. 49, 1774–1779 (2010). [CrossRef]
  11. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005). [CrossRef]
  12. M. Poulingue, J. Dijon, and P. Garre, “1.06 μm laser irradiation on high reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999). [CrossRef]
  13. R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994). [CrossRef]
  14. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006). [CrossRef]
  15. S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000). [CrossRef]
  16. Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011). [CrossRef]
  17. J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000). [CrossRef]
  18. S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited