OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 10 — Apr. 1, 2013
  • pp: D92–D96

Phase retrieval using nonlinear diversity

Chien-Hung Lu, Christopher Barsi, Matthew O. Williams, J. Nathan Kutz, and Jason W. Fleischer  »View Author Affiliations


Applied Optics, Vol. 52, Issue 10, pp. D92-D96 (2013)
http://dx.doi.org/10.1364/AO.52.000D92


View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the Gerchberg–Saxton algorithm to phase retrieval in a nonlinear system. Using a tunable photorefractive crystal, we experimentally demonstrate the noninterferometric technique by reconstructing an unknown phase object from optical intensity measurements taken at different nonlinear strengths.

© 2013 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(190.5330) Nonlinear optics : Photorefractive optics

History
Original Manuscript: December 5, 2012
Revised Manuscript: February 26, 2013
Manuscript Accepted: February 27, 2013
Published: March 29, 2013

Citation
Chien-Hung Lu, Christopher Barsi, Matthew O. Williams, J. Nathan Kutz, and Jason W. Fleischer, "Phase retrieval using nonlinear diversity," Appl. Opt. 52, D92-D96 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-10-D92


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981). [CrossRef]
  2. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  3. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  4. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 215829 (1982). [CrossRef]
  5. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef]
  6. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007). [CrossRef]
  7. H. R. Ingleby and D. R. McGaughey, “Parallel multiframe blind deconvolution using wavelength diversity,” Proc. SPIE 5562, 58–64 (2004). [CrossRef]
  8. B. R. Hunt, T. L. Overman, and P. Gough, “Image reconstruction from pairs of Fourier-transform magnitude,” Opt. Lett. 23, 1123–1125 (1998). [CrossRef]
  9. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  10. H. A. Hauptman, “The phase problem of X-ray crystallography,” Rep. Prog. Phys. 54, 1427–1454 (1991). [CrossRef]
  11. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  12. M. C. Scott, C.-C. Chen, M. Mecklenburg, C. Zhu, R. Xu, P. Ercius, U. Dahmen, B. C. Regan, and J. Miao, “Electron tomography at 2.4-angstrom resolution,” Nature 483, 444–447 (2012). [CrossRef]
  13. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999). [CrossRef]
  14. E. Serabyn, J. K. Wallace, and D. Mawet, “Speckle-phase measurement in a tandem-vortex coronagraph,” Appl. Opt. 50, 5453–5456 (2011). [CrossRef]
  15. P. J. Bardroff, U. Leonhardt, and W. P. Schleich, “Adaptive phase retrieval of nonlinear waves,” Opt. Commun. 147, 121–125 (1998). [CrossRef]
  16. D. Paganin and K. A. Nugent, “Phase measurement of waves that obey nonlinear equations,” Opt. Lett. 27, 622–624 (2002). [CrossRef]
  17. Y.-R. E. Tan, D. M. Paganin, R. P. Yu, and M. J. Morgan, “Wave-function reconstruction of complex fields obeying nonlinear parabolic equations,” Phys. Rev. E 68, 066602 (2003). [CrossRef]
  18. M. Puida and F. Ivanauskas, “Light beam phase retrieval in nonlinear media: a computer simulation,” Liet. Matem. Rink 45, 504 (2005).
  19. A. V. Martin and L. J. Allen, “Measuring the phase of a Bose-Einstein condensate,” Phys. Rev. A 76, 053606 (2007). [CrossRef]
  20. S.-W. Bahk, J. D. Zuegel, J. R. Fienup, C. Widmayer, and J. Heebner, “Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain,” Appl. Opt. 47, 6586–6593 (2008). [CrossRef]
  21. V. Yu. Ivanov, V. P. Sivokon, and M. A. Vorontsov, “Phase retrieval from a set of intensity measurements: theory and experiment,” J. Opt. Soc. Am. A 9, 1515–1524 (1992). [CrossRef]
  22. A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177, 9–13 (2000). [CrossRef]
  23. C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3, 211–215 (2009). [CrossRef]
  24. A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83, 031802R (2011). [CrossRef]
  25. http://ervinlaszlo.com/forum/2010/07/12/designing-a-multiperson-planetary-consciousness/ .
  26. T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004). [CrossRef]
  27. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990). [CrossRef]
  28. G. Liu and P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159–165 (1987). [CrossRef]
  29. C. Barsi, and J. W. Fleischer, “Digital reconstruction of optically induced potentials,” Opt. Express 17, 23338–23343 (2009). [CrossRef]
  30. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1978). [CrossRef]
  31. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984). [CrossRef]
  32. W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007). [CrossRef]
  33. C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo, “Observation of a gradient catastrophe generating solitons,” Phys. Rev. Lett. 102, 083902 (2009). [CrossRef]
  34. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987). [CrossRef]
  35. S. Jia, W. Wan, and J. W. Fleischer, “Forward four-wave mixing with defocusing nonlinearity,” Opt. Lett. 32, 1668–1670 (2007). [CrossRef]
  36. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited