OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2200–2217

Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces

C. S. Edwards and P. R. Christensen  »View Author Affiliations

Applied Optics, Vol. 52, Issue 11, pp. 2200-2217 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1900 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often > 5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically < 2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars. Miniaturization of this instrument has also been demonstrated, as the same microscope objective has been mounted to a flight-spare mini-TES. Further miniaturization of this instrument is straightforward with modern electronics, and the development of this instrument as an arm-mounted device is the end goal.

© 2013 Optical Society of America

OCIS Codes
(300.6190) Spectroscopy : Spectrometers
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:

Original Manuscript: November 9, 2012
Manuscript Accepted: February 14, 2013
Published: April 3, 2013

C. S. Edwards and P. R. Christensen, "Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces," Appl. Opt. 52, 2200-2217 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Gellert, R. Rieder, J. Brückner, B. C. Clark, G. Dreibus, G. Klingelhöfer, G. Lugmair, D. W. Ming, H. Wänke, A. Yen, J. Zipfel, and S. W. Squyres, “Alpha particle X-ray spectrometer (APXS): results from Gusev crater and calibration report,” J. Geophys. Res. 111, E02S05 (2006). [CrossRef]
  2. R. V. Morris, G. Klingelhöfer, B. Bernhardt, C. Schröder, D. S. Rodionov, J. R. A. de souza, A. Yen, R. Gellert, E. N. Evlanov, J. Foh, E. Kankeleit, P. Gütlich, D. W. Ming, F. Renz, T. Wdowiak, S. W. Squyres, and R. E. Arvidson, “Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit Rover,” Science 305, 833–836 (2004). [CrossRef]
  3. K. E. Herkenhoff, S. W. Squyres, J. F. Bell, J. N. Maki, H. M. Arneson, P. Bertelsen, D. I. Brown, S. A. Collins, A. Dingizian, S. T. Elliott, W. Goetz, E. C. Hagerott, A. G. Hayes, M. J. Johnson, R. L. Kirk, S. McLennan, R. V. Morris, L. M. Scherr, M. A. Schwochert, L. R. Shiraishi, G. H. Smith, L. A. Soderblom, J. N. Sohl-Dickstein, and M. V. Wadsworth, “Athena microscopic imager investigation,” J. Geophys. Res. 108, 8065 (2003). [CrossRef]
  4. P. R. Christensen, G. L. Mehall, S. H. Silverman, S. Anwar, G. Cannon, N. Gorelick, R. Keehn, T. Tourville, D. Bates, S. Ferry, T. Fortuna, J. Jeffryes, W. O’Donnell, R. Peralta, T. Wolverton, D. Blaney, R. Denise, J. Rademacher, R. V. Morris, and S. Squyres, “The miniature thermal emission spectrometer for the Mars Exploration Rovers,” J. Geophys. Res. 108, 8064 (2003). [CrossRef]
  5. J. F. Bell, J. Joseph, J. N. Sohl-Dickstein, H. M. Arneson, M. J. Johnson, M. T. Lemmon, and D. Savransky, “In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments,” J. Geophys. Res. 111, E02S03 (2006). [CrossRef]
  6. S. W. Squyres, R. E. Arvidson, S. Ruff, R. Gellert, R. V. Morris, D. W. Ming, L. Crumpler, J. D. Farmer, D. J. Des Marais, A. Yen, S. M. McLennan, W. Calvin, J. F. Bell, B. C. Clark, A. Wang, T. J. McCoy, M. E. Schmidt, and P. A. de Souza, “Detection of silica-rich deposits on Mars,” Science 320, 1063–1067 (2008). [CrossRef]
  7. R. Gellert, R. Rieder, R. C. Anderson, J. Brückner, B. C. Clark, G. Greibus, T. Economou, G. Klingelhöfer, G. W. Lugmain, D. W. Ming, S. W. Squyres, C. d’Uston, H. Wänke, A. Yen, and J. Zipfel, “Chemistry of rocks and soils at Gusev Crater from the alpha particle X-ray spectrometer,” Science 305, 829–832 (2004). [CrossRef]
  8. M. P. Golombek, J. A. Grant, L. S. Crumpler, R. Greeley, R. E. Arvidson, I. J. F. Bell, C. M. Weitz, R. Sullivan, P. R. Christensen, L. A. Soderblom, and S. W. Squyres, “Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars,” J. Geophys. Res. 111, E12S10 (2006). [CrossRef]
  9. S. M. McLennan, J. F. Bell, W. M. Calvin, P. R. Christensen, B. C. Clark, P. A. de Souza, J. Farmer, W. H. Farrand, D. A. Fike, R. Gellert, A. Ghosh, T. D. Glotch, J. P. Grotzinger, B. Hahn, K. E. Herkenhoff, J. A. Hurowitz, J. R. Johnson, S. S. Johnson, B. Jolliff, G. Klingelhöfer, A. H. Knoll, Z. Learner, M. C. Malin, H. Y. McSween, J. Pocock, S. W. Ruff, L. A. Soderblom, S. W. Squyres, N. J. Tosca, W. A. Watters, M. B. Wyatt, and A. Yen, “Provenance and diagenesis of the evaporite-bearing burns formation, Meridiani Planum, Mars,” Earth Planet. Sci. Lett. 240, 95–121 (2005). [CrossRef]
  10. S. W. Ruff, P. R. Christensen, D. L. Blaney, W. H. Farrand, J. R. Johnson, J. R. Michalski, J. E. Moersch, S. P. Wright, and S. W. Squyres, “The rocks of Gusev Crater as viewed by the Mini-TES instrument,” J. Geophys. Res. 111, E12S18 (2006). [CrossRef]
  11. S. W. Ruff, J. D. Farmer, W. M. Calvin, K. E. Herkenhoff, J. R. Johnson, R. V. Morris, M. S. Rice, R. E. Arvidson, J. F. Bell, P. R. Christensen, and S. W. Squyres, “Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit Rover in Gusev Crater, Mars,” J. Geophys. Res. 116, E00F23 (2011). [CrossRef]
  12. S. W. Squyres, O. Aharonson, B. C. Clark, B. A. Cohen, L. Crumpler, P. A. de Souza, W. H. Farrand, R. Gellert, J. Grant, J. P. Grotzinger, A. F. C. Haldemann, J. R. Johnson, G. Klingelhofer, K. W. Lewis, R. Li, T. McCoy, A. S. McEwen, H. Y. McSween, D. W. Ming, J. M. Moore, R. V. Morris, T. J. Parker, J. W. Rice, S. Ruff, M. Schmidt, C. Schroder, L. A. Soderblom, and A. Yen, “Pyroclastic activity at home plate in Gusev Crater, Mars,” Science 316, 738–742 (2007). [CrossRef]
  13. K. W. Lewis, O. Aharonson, J. P. Grotzinger, S. W. Squyres, J. F. Bell, L. S. Crumpler, and M. E. Schmidt, “Structure and stratigraphy of home plate from the Spirit Mars Exploration Rover,” J. Geophys. Res. 113, E12S36 (2008). [CrossRef]
  14. G. Klingelhöfer, R. V. Morris, B. Bernhardt, C. Schröder, D. S. Rodionov, J. R. A. de souza, A. Yen, R. Gellert, E. N. Evlanov, B. Zubkov, J. Foh, E. Kankeleit, P. Gütlich, D. W. Ming, F. Renz, T. Wdowiak, S. W. Squyres, and R. E. Arvidson, “Jarosite and hematite at Meridiani Planum from the Mössbauer spectrometer on the opportunity rover,” Science 306, 1740–1745 (2004). [CrossRef]
  15. A. D. Rogers and O. Aharonson, “Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements,” J. Geophys. Res. 113, E06S14 (2008). [CrossRef]
  16. J. P. Grotzinger, J. Crisp, A. R. Vasavada, R. C. Anderson, C. J. Baker, R. Barry, D. F. Blake, P. Conrad, K. S. Edgett, B. Ferdowski, R. Gellert, J. B. Gilbert, M. Golombek, J. Gomez-Elvira, D. M. Hassler, L. Jandura, M. Litvak, P. Mahaffy, J. Maki, M. Meyer, M. C. Malin, I. Mitrofanov, J. J. Simmonds, D. Vaniman, R. V. Welch, and R. C. Wiens, “Mars Science Laboratory mission and science investigation,” Space Sci. Rev. 170(2), 5–56 (2012). [CrossRef]
  17. S. Maurice, R. C. Wiens, M. Saccoccio, B. Barraclough, O. Gasnault, O. Forni, N. Mangold, D. Baratoux, S. Bender, G. Berger, J. Bernardin, M. Berthe, N. Bridges, D. Blaney, M. Bouye, P. Cais, B. Clark, S. Clegg, A. Cousin, D. Cremers, A. Cros, L. DeFlores, C. Derycke, B. Dingler, G. Dromart, B. Dubois, M. Dupieux, E. Durand, L. d’Uston, C. Fabre, B. Faure, A. Gaboriaud, T. Gharsa, K. Herkenhoff, E. Kan, L. Kirkland, D. Kouach, J. L. Lacour, Y. Langevin, J. Lasue, S. Le Mouelic, M. Lescure, E. Lewin, D. Limonadi, G. Manhes, P. Mauchien, C. McKay, P. Y. Meslin, Y. Michel, E. Miller, H. E. Newsom, G. Orttner, A. Paillet, L. Pares, Y. Parot, R. Perez, P. Pinet, F. Poitrasson, B. Quertier, B. Salle, C. Sotin, V. Sautter, H. Seran, J. J. Simmonds, J. B. Sirven, R. Stiglich, N. Striebig, J. J. Thocaven, M. J. Toplis, and D. Vaniman, “The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: science objectives and mast unit description,” Space Sci. Rev. 170(2), 95–166 (2012).
  18. R. C. Wiens, S. Maurice, B. Barraclough, M. Saccoccio, W. C. Barkley, J. F. Bell, S. Bender, J. Bernardin, D. Blaney, J. Blank, M. Bouye, N. Bridges, N. Bultman, P. Cais, R. C. Clanton, B. Clark, S. Clegg, A. Cousin, D. Cremers, A. Cros, L. DeFlores, D. Delapp, R. Dingler, C. D’Uston, M. D. Dyar, T. Elliott, D. Enemark, C. Fabre, M. Flores, O. Forni, O. Gasnault, T. Hale, C. Hays, K. Herkenhoff, E. Kan, L. Kirkland, D. Kouach, D. Landis, Y. Langevin, N. Lanza, F. LaRocca, J. Lasue, J. Latino, D. Limonadi, C. Lindensmith, C. Little, N. Mangold, G. Manhes, P. Mauchien, C. McKay, E. Miller, J. Mooney, R. V. Morris, L. Morrison, T. Nelson, H. Newsom, A. Ollila, M. Ott, L. Pares, R. Perez, F. Poitrasson, C. Provost, J. W. Reiter, T. Roberts, F. Romero, V. Sautter, S. Salazar, J. J. Simmonds, R. Stiglich, S. Storms, N. Striebig, J. J. Thocaven, T. Trujillo, M. Ulibarri, D. Vaniman, N. Warner, R. Waterbury, R. Whitaker, J. Witt, and B. Wong-Swanson, “The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: body unit and combined system tests,” Space Sci. Rev. 170(4), 167–227 (2012). [CrossRef]
  19. K. Edgett, R. A. Yingst, M. Ravine, M. Caplinger, J. Maki, F. T. Ghaemi, J. Schaffner, J. Bell, L. Edwards, K. Herkenhoff, E. Heydari, L. Kah, M. Lemmon, M. Minitti, T. Olson, T. Parker, S. Rowland, J. Schieber, R. Sullivan, D. Sumner, P. Thomas, E. Jensen, J. Simmonds, A. Sengstacken, R. Willson, and W. Goetz, “Curiosity’s Mars Hand Lens Imager (MAHLI) investigation,” Space Sci. Rev. 170(4), 259–317 (2012). [CrossRef]
  20. D. Blake, D. Vaniman, C. Achilles, R. Anderson, D. Bish, T. Bristow, C. Chen, S. Chipera, J. Crisp, D. Des Marais, R. Downs, J. Farmer, S. Feldman, M. Fonda, M. Gailhanou, H. Ma, D. Ming, R. Morris, P. Sarrazin, E. Stolper, A. Treiman, and A. Yen, “Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory,” Space Sci. Rev. 170(1), 341–399 (2012). [CrossRef]
  21. P. Mahaffy, C. Webster, M. Cabane, P. Conrad, P. Coll, S. Atreya, R. Arvey, M. Barciniak, M. Benna, L. Bleacher, W. Brinckerhoff, J. Eigenbrode, D. Carignan, M. Cascia, R. Chalmers, J. Dworkin, T. Errigo, P. Everson, H. Franz, R. Farley, S. Feng, G. Frazier, C. Freissinet, D. Glavin, D. Harpold, D. Hawk, V. Holmes, C. Johnson, A. Jones, P. Jordan, J. Kellogg, J. Lewis, E. Lyness, C. Malespin, D. Martin, J. Maurer, A. McAdam, D. McLennan, T. Nolan, M. Noriega, A. Pavlov, B. Prats, E. Raaen, O. Sheinman, D. Sheppard, J. Smith, J. Stern, F. Tan, M. Trainer, D. Ming, R. Morris, J. Jones, C. Gundersen, A. Steele, J. Wray, O. Botta, L. Leshin, T. Owen, S. Battel, B. Jakosky, H. Manning, S. Squyres, R. Navarro-González, C. McKay, F. Raulin, R. Sternberg, A. Buch, P. Sorensen, R. Kline-Schoder, D. Coscia, C. Szopa, S. Teinturier, C. Baffes, J. Feldman, G. Flesch, S. Forouhar, R. Garcia, D. Keymeulen, S. Woodward, B. Block, K. Arnett, R. Miller, C. Edmonson, S. Gorevan, and E. Mumm, “The sample analysis at Mars investigation and instrument suite,” Space Sci. Rev. 170(4), 401–478 (2012). [CrossRef]
  22. P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, and M. D. Smith, “Results from the Mars global surveyor thermal emission spectrometer investigation,” Science 279, 1692–1698 (1998). [CrossRef]
  23. P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 odyssey mission,” Space Sci. Rev. 110(1-2), 85–130 (2004). [CrossRef]
  24. S. Murchie, R. Arvidson, P. Bedini, K. Beisser, J. P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, and R. T. Clancy, “Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO),” J. Geophys. Res. 112, E05S03 (2007). [CrossRef]
  25. J.-P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, and P. Drossart, and Omega-Team, “Mars surface diversity as revealed by the OMEGA/Mars express observations,” Science 307, 1576–1581 (2005). [CrossRef]
  26. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (McGraw-Hill, 1955).
  27. V. C. Farmer, The Infrared Spectra of Minerals (Mineralogical Society, 1974).
  28. V. E. Hamilton and P. R. Christensen, “Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy,” J. Geophys. Res. 105, 9717–9734 (2000). [CrossRef]
  29. T. D. Glotch, R. V. Morris, P. R. Christensen, and T. G. Sharp, “Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: application to martian hematite mineralization,” J. Geophys. Res. 109, E07003 (2004). [CrossRef]
  30. S. W. Ruff, “Spectral evidence for zeolite in the dust on Mars,” Icarus 168, 131–143 (2004). [CrossRef]
  31. J. L. Bandfield, V. E. Hamilton, and P. R. Christensen, “A global view of Martian volcanic compositions,” Science 287, 1626–1630 (2000). [CrossRef]
  32. J. F. Mustard and J. E. Hays, “Effects of hyperfine particles on reflectance spectra from 0.3 to 25 μm,” Icarus 125, 145–163 (1997). [CrossRef]
  33. G. R. Hunt and J. W. Salisbury, “Mid-infrared spectral behavior of metamorphic rocks,” Environ. Res. Paper 543-AFCRL-TR-76–0003, 67 (1976).
  34. Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel, “Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens. 36, 1062–1071 (1998). [CrossRef]
  35. P. R. Christensen, J. L. Bandfield, J. F. Bell, N. Gorelick, V. E. Hamilton, A. Ivanov, B. M. Jakosky, H. H. Kieffer, M. D. Lane, M. C. Malin, G. L. Mehall, T. McConnochie, A. S. McEwen, H. Y. McSween, J. E. Moersch, K. H. Nealson, J. W. Rice, M. I. Richardson, S. W. Ruff, M. D. Smith, T. N. Titus, and W. Wyatt, “Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results,” Science 300, 2056–2061 (2003). [CrossRef]
  36. P. R. Christensen, H. Y. McSween, J. L. Bandfield, S. W. Ruff, A. D. Rogers, V. E. Hamilton, N. Gorelick, M. B. Wyatt, B. M. Jakosky, H. H. Kieffer, M. C. Malin, and J. E. Moersch, “Evidence for igneous diversity and magmatic evolution on Mars from infrared spectral observations,” Nature 436, 882 (2005). [CrossRef]
  37. A. D. Rogers, P. R. Christensen, and J. L. Bandfield, “Compositional heterogeneity of the ancient martian crust: analysis of Ares Vallis bedrock the THEMIS and TES data,” J. Geophys. Res. 110, E05010 (2005). [CrossRef]
  38. T. D. Glotch and P. R. Christensen, “Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history,” J. Geophys. Res. 110, E09006 (2005). [CrossRef]
  39. M. S. Ramsey and P. R. Christensen, “Mineral abundance determination: quantitative deconvolution of thermal emission spectra,” J. Geophys. Res. 103, 577–596 (1998). [CrossRef]
  40. J. W. Salisbury, L. S. Walter, N. Vergo, and D. M. D’Aria, Infrared (2.1–25 μm) Spectra of Minerals (Johns Hopkins University, 1992).
  41. P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. D. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735–9739 (2000). [CrossRef]
  42. S. W. Ruff, P. R. Christensen, P. W. Barbera, and D. L. Anderson, “Quantitative thermal emission spectroscopy of minerals: a technique for measurement and calibration,” J. Geophys. Res. 102, 14899–14913 (1997). [CrossRef]
  43. V. E. Hamilton and P. R. Christensen, “Evidence for extensive olivine-rich bedrock in Nili Fossae, Mars,” Geology 33, 433–436 (2005). [CrossRef]
  44. J. L. Bandfield, A. D. Rogers, and C. S. Edwards, “The role of aqueous alteration in the formation of martian soils,” Icarus 211, 157–171 (2011). [CrossRef]
  45. W. C. Koeppen and V. E. Hamilton, “Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data,” J. Geophys. Res. 113, E05001 (2008). [CrossRef]
  46. M. D. Lane, T. D. Glotch, M. D. Dyar, C. M. Pieters, R. Klima, T. Hiroi, J. L. Bishop, and J. Sunshine, “Midinfrared spectroscopy of synthetic olivines: thermal emission, specular and diffuse reflectance, and attenuated total reflectance studies of forsterite to fayalite,” J. Geophys. Res. 116, E08010 (2011). [CrossRef]
  47. J. W. Salisbury and J. W. Eastes, “The effect of particle size and porosity on spectral contrast in the mid-infrared,” Icarus 64, 586–588 (1985). [CrossRef]
  48. J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: a comparison of scattering models with measured spectra,” J. Geophys. Res. 100, 7465–7477 (1995). [CrossRef]
  49. V. E. Hamilton, P. R. Christensen, H. Y. McSween, and J. L. Bandfield, “Searching for the source regions of martian meteorites using MGS TES: integrating martian meteorites into the global distribution of igneous materials on Mars,” Meteorit. Planet. Sci. 38, 871–885 (2003). [CrossRef]
  50. M. A. Presley and P. R. Christensen, “Thermal conductivity measurements of particulate materials, part I: a review,” J. Geophys. Res. 102, 6535–6549 (1997). [CrossRef]
  51. S. W. Ruff and P. R. Christensen, “Basaltic andesite, altered basalt, and a TES-based search for smectite clay minerals on Mars,” Geophys. Res. Lett. 34, L10204 (2007). [CrossRef]
  52. J. M. Bennett and E. Ashley, “Infrared reflectance and emittance of silver and gold evaporated in ultrahigh vacuum,” Appl. Opt. 4, 221–224 (1965). [CrossRef]
  53. T. D. Glotch, P. R. Christensen, and T. G. Sharp, “Fresnel modeling of hematite crystal surfaces and application to martian hematite spherules,” Icarus 181, 408–418 (2006). [CrossRef]
  54. A. D. Rogers and P. R. Christensen, “Surface mineralogy of martian low-albedo regions from MGS TES data: implications for crustal evolution and surface alteration,” J. Geophys. Res. 112, E01003 (2007). [CrossRef]
  55. C. S. Edwards, P. R. Christensen, and V. E. Hamilton, “Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars,” J. Geophys. Res. 113, E11003 (2008). [CrossRef]
  56. K. C. Feely and P. R. Christensen, “Quantitative compositional analysis using thermal emission spectroscopy: application to igneous and metamorphic rocks,” J. Geophys. Res. 104, 24195–24210 (1999). [CrossRef]
  57. A. R. Vasavada, J. L. Bandfield, B. T. Greenhagen, P. O. Hayne, M. A. Siegler, J.-P. Williams, and D. A. Paige, “Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer experiment,” J. Geophys. Res. 117, E00H18 (2012). [CrossRef]
  58. D. L. Stierwalt, J. B. Bernstein, and D. D. Kirk, “Measurement of the infrared spectral absorptance of optical materials,” Appl. Opt. 2, 1169–1173 (1963). [CrossRef]
  59. D. Kember, D. H. Chenery, N. Sheppard, and J. Fell, “Fourier-transform i.r. emission studies of weakly emitting overlayers on metal surfaces; experimental and spectral-ratioing procedures and the comparative use of room temperature triglycine sulphate and low-temperature mercury cadmium telluride detectors,” Spectrochim. Acta Part A 35, 455–459 (1979). [CrossRef]
  60. F. J. DeBlase and S. Compton, “Infrared emission spectroscopy: a theoretical and experimental review,” Appl. Spectrosc. 45, 611–618 (1991). [CrossRef]
  61. R. T. Rewick and R. G. Messerschmidt, “A simple device for studying FT-IR emission spectra of solid surfaces,” Appl. Spectrosc. 45, 297–301 (1991). [CrossRef]
  62. P. R. Christensen and S. T. Harrison, “Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings on rocks,” J. Geophys. Res. 98, 19819–19834 (1993). [CrossRef]
  63. R. A. Hanel, B. J. Conrath, V. G. Kunde, C. Prabhakara, I. Revah, V. V. Salomonson, and G. Wolford, “The Nimbus 4 infrared spectroscopy experiment 1. Calibrated thermal emission spectra,” J. Geophys. Res. 77, 2629–2641 (1972). [CrossRef]
  64. R. J. P. Lyon, “Evaluation of infrared spectroscopy for compositional analysis of lunar and planetary soils,” in Stanford Research Institute Final Report Contract NASr (Stanford Research Institute, 1962).
  65. R. L. Henry, “The transmission of powder films in the infrared,” J. Opt. Soc. Am. 38, 775–787 (1948). [CrossRef]
  66. P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. Titus, M. C. Malin, R. V. Morris, M. D. Lane, R. N. Clark, B. M. Jakosky, M. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. H. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: description and surface science results,” J. Geophys. Res. 106, 23823–23871 (2001). [CrossRef]
  67. M. D. Lane, “Infrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite,” J. Geophys. Res. 104, 14099–14108 (1999). [CrossRef]
  68. J. B. Pollack, T. Roush, F. Witteborn, J. Bregman, D. Wooden, C. Stoker, O. B. Toon, D. Rank, B. Dalton, and R. Freedman, “Thermal emission spectra of Mars (5.4–10.5 μm): evidence for sulfates, carbonates, and hydrates,” J. Geophys. Res. 95, 14595–14627 (1990). [CrossRef]
  69. A. R. Gillespie, A. B. Kahle, and R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches,” Remote Sens. Environ. 20, 209–235 (1986). [CrossRef]
  70. M. S. Ramsey, P. R. Christensen, N. Lancaster, and D. A. Howard, “Identification of sand sources and transport pathways at Kelso Dunes, California using thermal infrared remote sensing,” Geol. Soc. Am. Bull. 111, 646–662 (1999). [CrossRef]
  71. J. Blacksberg, G. R. Rossman, and A. Gleckler, “Time-resolved Raman spectroscopy for in situ planetary mineralogy,” Appl. Opt. 49, 4951–4962 (2010). [CrossRef]
  72. M. D. Smith, M. J. Wolff, M. T. Lemmon, N. Spanovich, D. Banfield, C. J. Budney, R. T. Clancy, A. Ghosh, G. A. Landis, P. Smith, B. Whitney, P. R. Christensen, and S. W. Squyres, “First atmospheric results from the Mars Exploration rovers Mini-TES,” Science 306, 1750–1753 (2004). [CrossRef]