OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2235–2247

Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties

Jörg Schmidt, Ulla Wandinger, and Aleksey Malinka  »View Author Affiliations

Applied Optics, Vol. 52, Issue 11, pp. 2235-2247 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual-field-of-view Raman lidar measurements, detecting Raman-scattered light with two fields of view simultaneously, are used for the first time to retrieve cloud microphysical properties. The measurements are performed with the Multiwavelength Atmospheric Raman Lidar for Temperature, Humidity, and Aerosol Profiling (MARTHA) at the Leibniz Institute for Tropospheric Research in Leipzig, Germany. Light that is scattered in forward direction by cloud droplets and inelastically backscattered by N2 molecules is detected. A forward iterative algorithm uses the measured signals to derive profiles of the effective cloud droplet radius, extinction coefficient, and liquid-water content of the investigated clouds. The setup, algorithm, error analysis, and a measurement example are presented. The obtained liquid-water path is validated by observations with a microwave radiometer. With the capability to retrieve aerosol properties as well as cloud microphysical properties, the Raman lidar MARTHA is an ideal tool for studies of the aerosol indirect effect.

© 2013 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.4210) Scattering : Multiple scattering
(290.5860) Scattering : Scattering, Raman
(010.1615) Atmospheric and oceanic optics : Clouds

ToC Category:
Remote Sensing and Sensors

Original Manuscript: January 7, 2013
Manuscript Accepted: February 17, 2013
Published: April 4, 2013

Jörg Schmidt, Ulla Wandinger, and Aleksey Malinka, "Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties," Appl. Opt. 52, 2235-2247 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. Fahey, J. Haywood, J. Lean, D. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. V. Dorland, Climate Change 2007—The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2007), Chap. 2.
  2. H. Guo, J. E. Penner, M. Herzog, and S. Xie, “Investigation of the first and second aerosol indirect effects using data from the May 2003 Intensive Operational Period at the Southern Great Plains,” J. Geophys. Res. 112, D15206 (2007). [CrossRef]
  3. S. Twomey, “Influence of pollution on shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149–1152 (1977). [CrossRef]
  4. A. McComiskey and G. Feingold, “Quantifying error in the radiative forcing of the first aerosol indirect effect,” Geophys. Res. Lett. 35, L02810 (2008). [CrossRef]
  5. J. L. Brenguier, P. Y. Chuang, Y. Fouquart, D. W. Johnson, F. Parol, H. Pawlowska, J. Pelon, L. Schüller, F. Schröder, and J. Snider, “An overview of the ACE-2 CLOUDYCOLUMN closure experiment,” Tellus 52, 815–827 (2000). [CrossRef]
  6. M.-L. Lu, G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, “Aerosol-cloud relationships in continental shallow cumulus,” J. Geophys. Res. 113, D15201 (2008). [CrossRef]
  7. F.-M. Bréon, D. Tanré, and S. Generoso, “Aerosol effect on cloud droplet size monitored from satellite,” Science 295, 834–838 (2002). [CrossRef]
  8. J. Quaas, O. Boucher, N. Bellouin, and S. Kinne, “Satellite-based estimate of the direct and indirect aerosol climate forcing,” J. Geophys. Res. 113, D05204 (2008). [CrossRef]
  9. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef]
  10. A. Ansmann, M. Tesche, P. Seifert, S. Groß, V. Freudenthaler, A. Apituley, K. M. Wilson, I. Serikov, H. Linné, B. Heinold, A. Hiebsch, F. Schnell, J. Schmidt, I. Mattis, U. Wandinger, and M. Wiegner, “Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010,” J. Geophys. Res. 116, D00U02 (2011). [CrossRef]
  11. D. Müller, A. Kolgotin, I. Mattis, A. Petzold, and A. Stohl, “Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment,” Appl. Opt. 50, 2069–2079 (2011). [CrossRef]
  12. Y. Sasano and E. Browell, “Light-scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989). [CrossRef]
  13. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B. Sohn, J. Won, S. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in east Asia,” J. Geophys. Res. 106, 18345–18359 (2001). [CrossRef]
  14. L. R. Bissonnette and D. L. Hutt, “Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995). [CrossRef]
  15. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo Simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002). [CrossRef]
  16. I. Veselovskii, M. Korenskii, V. Griaznov, D. N. Whiteman, M. McGill, G. Roy, and L. Bissonnette, “Information content of data measured with a multiple-field-of-view lidar,” Appl. Opt. 45, 6839–6848 (2006). [CrossRef]
  17. L. R. Bissonnette, G. Roy, and N. Roy, “Multiple-scattering-based lidar retrieval: method and results of cloud probings,” Appl. Opt. 44, 5565–5581 (2005). [CrossRef]
  18. A. V. Malinka and E. P. Zege, “Possibilities of warm cloud microstructure profiling with multiple-field-of-view Raman lidar,” Appl. Opt. 46, 8419–8427 (2007). [CrossRef]
  19. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef]
  20. U. Wandinger, “Multiple-scattering influence on extinction-and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  21. G. Martucci and C. D. O’Dowd, “Ground-based retrieval of continental and marine warm cloud microphysics,” Atmos. Meas. Tech. 4, 2749–2765 (2011). [CrossRef]
  22. U. Wandinger, I. Mattis, M. Tesche, A. Ansmann, J. Bösenberg, A. Chaikovski, V. Freudenthaler, L. Komguem, H. Linne, V. Matthias, J. Pelon, L. Sauvage, P. Sobolewski, G. Vaughan, and M. Wiegner, “Air-mass modification over Europe: EARLINET aerosol observations from Wales to Belarus,” J. Geophys. Res. 109, D24205 (2004). [CrossRef]
  23. I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Müller, Y. F. Arshinov, S. M. Bobrovnikov, and I. B. Serikov, “Relative-humidity profiling in the troposphere with a Raman lidar,” Appl. Opt. 41, 6451–6462 (2002). [CrossRef]
  24. Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer,” Appl. Opt. 44, 3593–3603 (2005). [CrossRef]
  25. J. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef]
  26. J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: the German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131(2012). [CrossRef]
  27. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002). [CrossRef]
  28. R. N. Wilson, Reflecting Telescope Optics II (Springer, 2001).
  29. J. Schmidt, “Aufbau und Test von Mehrfachstreukanälen zur Messung der Wolkentröpfchengröße mit einem Ramanlidar,” Master’s thesis (Friedrich Schiller University Jena, 2009).
  30. V. Freudenthaler, “Effects of spatially inhomogeneous photomultiplier sensitivity on lidar signals and remedies,” in Reviewed and revised papers presented at the 22nd International Laser Radar Conference (ILRC) (ESA Publications Division, 2004), pp. 37–40.
  31. A. V. Malinka and E. P. Zege, “Analytical modeling of Raman lidar return, including multiple scattering,” Appl. Opt. 42, 1075–1080 (2003). [CrossRef]
  32. A. V. Malinka and J. Schmidt, “Overlap function of a lidar with a field stop shifted from the focal plane,” in Proceedings of the 25th International Laser Radar Conference (ILRC), G. Matvienko and A. Zemlyanov, eds. (Curran Associates, 2010), pp. 79–81.
  33. N. Miles, J. Verlinde, and E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000). [CrossRef]
  34. N. Gaussiat, R. J. Hogan, and A. J. Illingworth, “Accurate liquid water path retrieval from low-cost microwave radiometers using additional information from a lidar ceilometer and operational forecast models,” J. Atmos. Ocean. Technol. 24, 1562–1575 (2007). [CrossRef]
  35. A. McComiskey and G. Feingold, “The scale problem in quantifying aerosol indirect effects,” Atmos. Chem. Phys. 12, 1031–1049 (2012). [CrossRef]
  36. Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited