OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2312–2319

Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells

Qingli Huang, Jinze Wang, Baogang Quan, Qiulin Zhang, Dongxiang Zhang, Dongmei Li, Qingbo Meng, Li Pan, Yanqin Wang, and Guozhen Yang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 11, pp. 2312-2319 (2013)
http://dx.doi.org/10.1364/AO.52.002312


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have designed a single thin planar diffractive optical element (DOE) based on the principle of diffractive optics to simultaneously split and concentrate the incident light into several energy ranges for lateral multijunction solar cells. A prototype with the maximum thickness of 6.95 μm and 32 quantized levels in depth was fabricated by photolithographic technology. The spectrum-splitting and concentrating performance of the prototype, which were measured quantitatively, show good agreement with the simulation results. As mass production of a DOE can be produced by imprint technology, our design provides a feasible means for low-cost, large-scale, and high-efficiency photovoltaic applications.

© 2013 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(220.1770) Optical design and fabrication : Concentrators
(230.1360) Optical devices : Beam splitters
(350.6050) Other areas of optics : Solar energy
(220.4298) Optical design and fabrication : Nonimaging optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 28, 2012
Revised Manuscript: January 24, 2013
Manuscript Accepted: February 21, 2013
Published: April 4, 2013

Citation
Qingli Huang, Jinze Wang, Baogang Quan, Qiulin Zhang, Dongxiang Zhang, Dongmei Li, Qingbo Meng, Li Pan, Yanqin Wang, and Guozhen Yang, "Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells," Appl. Opt. 52, 2312-2319 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-11-2312


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Barnett, D. Kirkpatrick, and C. Honsberg, “New US ultra high efficiency R&D programme,” presented at the 21st European Photovoltaic Solar Energy Conference, Spain, 4–8 September2006.
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012). [CrossRef]
  3. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p–n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961). [CrossRef]
  4. A. Imenes, and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Solar Energy Mater. Sol. Cells 84, 19–69 (2004). [CrossRef]
  5. M. A. Green and A. Ho-Baillie, “Forty three per cent composite split-spectrum concentrator solar cell efficiency,” Prog. Photovoltaics 18, 42–47 (2010). [CrossRef]
  6. J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, and T. A. McCollum, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovoltaics 19, 352–360 (2011). [CrossRef]
  7. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11, 174–177 (2012). [CrossRef]
  8. H. Yuen, “High efficiency solar cells at solar junction,” in Renewable Energy and the Environment, OSA Technical Digest (CD) (Optical Society of America, 2011) paper SRWB3(2011).
  9. E. D. Jackson, “Solar energy converter,” U.S. patent 2,949,498 (16August1960).
  10. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, and D. Aiken, “Very high efficiency solar cell modules,” Prog. Photovoltaics 17, 75–83 (2009). [CrossRef]
  11. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emergy, R. Schwartz, D. Carlson, S. Bowden, and D. Aiken, “Milestones toward 50% efficient solar cell modules,” presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3September2007.
  12. M. Stefancich, A. Zayan, M. Chiesa, S. Rampino, D. Roncati, L. Kimerling, and J. Michel, “Single element spectral splitting solar concentrator for multiple cells CPV system,” Opt. Express 20, 9004–9018 (2012). [CrossRef]
  13. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency,” Prog. Photovoltaics 19, 61–72 (2011). [CrossRef]
  14. D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating PV system based on spectral separation of solar radiation,” Phys. Status Solidi 206, 375–378 (2009). [CrossRef]
  15. B. Groβ, G. Peharz, G. Siefer, M. Peters, J. Goldschmidt, M. Steiner, W. Guter, V. Klinger, B. George, and F. Dimroth, “Highly efficient light splitting photovoltaic receiver,” in 24th European Photovoltaic Solar Energy Conference and Exhibition (EU PCSEC Conference Proceedings) (2009), pp. 130–134.
  16. J. P. Penn, “High concentration spectrum splitting solar collector,” U.S. patent 6,469,241 (22October2002).
  17. B. Fisher and J. Biddle, “Luminescent spectral splitting: efficient spatial division of solar spectrum at low concentration,” Solar Energy Mater. Sol. Cells 95, 1741–1755 (2011). [CrossRef]
  18. C. R. Lewis, W. M. Phillips, V. B. Shields, P. M. Stella, and I. Bekey, “Multi-bandgap high efficiency converter (rainbow),” in Proceedings of IEEE Conference on Energy Conversion Engineering (IEEE, 1997), pp. 401–406.
  19. U. Ortabasi, “Concentrating photovoltaic cavity converters for extreme solar-to-electric conversion efficiencies,” U.S. patent 6,689,949 (10February2004).
  20. M. A. Smith, S. Sinharoy, V. G. Weizer, O. Khan, A. Pal, E. B. Clark, D. M. Wilt, D. A. Scheiman, and N. Mardesich, “Solar cells for NASA RAINBOW concentrator,” in Proceedings of IEEE Conference on Photovoltaic Specialists (IEEE, 2000), pp. 1139–1141.
  21. J. M. Castro, D. M. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870 (2010). [CrossRef]
  22. B. Y. Gu, G. Z. Yang, B. Z. Dong, M. P. Chang, and O. K. Ersoy, “Diffractive-phase-element design that implements several optical functions,” Appl. Opt. 34, 2564–2570 (1995). [CrossRef]
  23. B. Z. Dong, G. Q. Zhang, G. Z. Yang, B. Y. Gu, S. H. Zheng, D. H. Li, Y. S. Chen, X. M. Cui, M. L. Chen, and H. D. Liu, “Design and fabrication of a diffractive phase element for wavelength demultiplexing and spatial focusing simultaneously,” Appl. Opt. 35, 6859–6864 (1996). [CrossRef]
  24. Y. Ogura, N. Shirai, J. Tanida, and Y. Ichioka, “Wavelength-multiplexing diffractive phase elements: design, fabrication, and performance evaluation,” J. Opt. Soc. Am. A 18, 1082–1092 (2001). [CrossRef]
  25. M. W. Farn, M. B. Stern, W. B. Veldkamp, and S. S. Medeiros, “Color separation by use of binary optics,” Opt. Lett. 18, 1214–1216 (1993). [CrossRef]
  26. A. Herbjornrod, K. Schjolberg-Henriksen, H. Angelskar, and M. Lacolle, “Resist evaluation for fabrication of diffractive optical elements (DOEs) with sub-micron resolution in a MEMS production line,” J. Micromech. Microeng. 19, 125022 (2009). [CrossRef]
  27. H. Angelskar, I. R. Johansen, M. Lacolle, H. Sagberg, and A. S. Sudbo, “Spectral uniformity of two- and four-level diffractive optical elements for spectroscopy,” Opt. Express 17, 10206–10222 (2009). [CrossRef]
  28. O. Lovhaugen, I. R. Johansen, K. A. H. Bakke, B. G. Fismen, and S. Nicolas, “Dedicated spectrometers based on diffractive optics: design, modeling and evaluation,” J. Mod. Opt. 51, 2203–2222 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited