OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2340–2345

Fiber-optic trap-on-a-chip platform for probing low refractive index contrast biomaterials

Tessa M. Piñón, Alessandro R. Castelli, Linda S. Hirst, and Jay E. Sharping  »View Author Affiliations

Applied Optics, Vol. 52, Issue 11, pp. 2340-2345 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual-beam fiber trapping is a versatile technique for manipulating microparticles. We fabricate and evaluate the performance of a compact trap-on-a-chip design and demonstrate, for what we believe is the first time, trapping of low-contrast (m<1.005) lipid vesicles in solution. Counterpropagating fibers are fixed along the chip channel, and we calibrate the trap by optically displacing polystyrene microspheres from the trap center. Measured scattering forces are 3049pN from each beam. Stable trapping and reversible deformation of lipid vesicles is demonstrated under femtonewton trapping forces. This chip has applications in probing a variety of soft biomaterials, such as biological cells, lipid membranes, and protein assemblies.

© 2013 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1420) Medical optics and biotechnology : Biology

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 10, 2012
Revised Manuscript: January 7, 2013
Manuscript Accepted: March 6, 2013
Published: April 8, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Tessa M. Piñón, Alessandro R. Castelli, Linda S. Hirst, and Jay E. Sharping, "Fiber-optic trap-on-a-chip platform for probing low refractive index contrast biomaterials," Appl. Opt. 52, 2340-2345 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22, 8151–8155 (2006). [CrossRef]
  2. R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. 18, S1151–S1176 (2006). [CrossRef]
  3. P. M. Bendix and L. B. Oddershede, “Expanding the optical trapping range of lipid vesicles to the nanoscale,” Nano Lett. 11, 5431–5437 (2011). [CrossRef]
  4. Y. Shitamichi, M. Ichikawa, and Y. Kimura, “Mechanical properties of giant liposome studied using optical tweezers,” Chem. Phys. Lett. 479, 274–278 (2009). [CrossRef]
  5. D. K. Fygenson, J. F. Marko, and A. Libchaber, “Mechanics of microtubule-based membrane extension,” Phys. Rev. Lett. 79, 4497–4500 (1997). [CrossRef]
  6. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006). [CrossRef]
  7. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  8. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001). [CrossRef]
  9. P. B. Bareil, Y. Sheng, and A. Chiou, “Local stress distribution on the surface of a spherical cell in an optical stretcher,” Opt. Express 14, 12503–12509 (2006). [CrossRef]
  10. A. E. Ekpenyong, C. L. Posey, J. L. Chaput, A. K. Burkart, M. M. Marquardt, T. J. Smith, and M. G. Nichols, “Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Appl. Opt. 48, 6344–6354 (2009). [CrossRef]
  11. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005). [CrossRef]
  12. B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed Microdevices 9, 703–710 (2007). [CrossRef]
  13. E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip 10, 617–625 (2010). [CrossRef]
  14. N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18, 4679–4688 (2010). [CrossRef]
  15. D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10, 1324–1327 (2010). [CrossRef]
  16. B. K. Lee and T. H. Kwon, “A novel monolithic fabrication method for a plastic microfluidic chip with liquid interconnecting ports,” J. Micromech. Microeng. 20, 105004 (2010). [CrossRef]
  17. R. Phillips, T. Ursell, P. Wiggins, and P. Sens, “Emerging roles for lipids in shaping membrane-protein function,” Nature 459, 379–385 (2009). [CrossRef]
  18. T. Baumgart, S. Das, W. W. Web, and J. T. Jenkins, “Membrane elasticity in giant vesicles with fluid phase coexistence,” Biophys. J. 89, 1067–1080 (2005). [CrossRef]
  19. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993). [CrossRef]
  20. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber optic trap,” App. Opt. 36, 6423(1997). [CrossRef]
  21. M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, “Theory of dielectric micro-sphere dynamics in a dual-beam optical trap,” Opt. Express 16, 9306–9317 (2008). [CrossRef]
  22. F. C. Allard, “Fiber-optic splices, connectors, and couplers,” in Fiber Optics Handbook, P. Morra and E. Vezzoni, eds. (McGraw-Hill, 1990), pp. 3.12–3.14.
  23. H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  25. C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Versions 1&2, IAP Research Report, No. 2002-08 & -11, Institut für angewandte Physik, Universitäat Bern (2002). http://www.iap.unibe.ch/publications/pub-detail.php?lang=en&id=199 .
  26. R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A. 114, 7077–7084 (2010). [CrossRef]
  27. K.-A. Chang, H. Lim, and C. B. Su, “A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluids,” Meas. Sci. Technol. 13, 1962–1965 (2002). [CrossRef]
  28. C.-B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 microns using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004). [CrossRef]
  29. D. Blair and E. Dufresne, “Matlab particle tracking code repository,” (2002), http://physics.georgetown.edu/matlab/ .
  30. J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of liquid water in the range −8°C to 150°C,” J. Phys. Chem. Ref. Data. 7, 941–948 (1978). [CrossRef]
  31. M. I. Angelova, S. Soléau, Ph. Méléard, J. F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields,” Prog. Colloid Polym. Sci. 89, 127–131 (1992). [CrossRef]
  32. T.-Y. Yoon, C. Jeong, S.-W. Lee, J. H. Kim, M. C. Choi, S.-J. Kim, M. W. Kim, and S. D. Lee, “Tomographic control of lipid-raft reconstitution in model membranes,” Nat. Mater. 5, 281–285 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited