OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2428–2446

Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances

Guido Masiello and Carmine Serio  »View Author Affiliations


Applied Optics, Vol. 52, Issue 11, pp. 2428-2446 (2013)
http://dx.doi.org/10.1364/AO.52.002428


View Full Text Article

Enhanced HTML    Acrobat PDF (2779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water–vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand.

© 2013 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 26, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: February 17, 2013
Published: April 10, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Guido Masiello and Carmine Serio, "Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances," Appl. Opt. 52, 2428-2446 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-11-2428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992). [CrossRef]
  2. A. R. Korb, P. Dybwad, W. Wadsworth, and J. W. Salisbury, “Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Appl. Opt. 35, 1679–1692 (1996). [CrossRef]
  3. S. Clausen, A. Morgenstjerne, and O. Rathmann, “Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers,” Appl. Opt. 35, 5683–5691 (1996). [CrossRef]
  4. J. A. Sobrino and J. Cuenca, “Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements,” Appl. Opt. 38, 3931–3936 (1999). [CrossRef]
  5. K. Yoshimori, S. Tamba, and R. Yokoyama, “Simultaneous measurements of skin sea surface temperature and sea surface emissivity from a single thermal imagery,” Appl. Opt. 41, 4937–4944 (2002). [CrossRef]
  6. J. Cuenca and J. A. Sobrino, “Experimental measurements for studying angular and spectral variation of thermal infrared emissivity,” Appl. Opt. 43, 4598–4602 (2004). [CrossRef]
  7. R. O. Knuteson, R. G. Dedecker, W. F. Feltz, B. J. Osbourne, H. E. Revercomb, and D. C. Tobin, “Infrared land surface emissivity in the vicinity of the ARM SGP central facility,” presented at the 13th ARM Science Team Meeting, Broomfield, Colorado, 31 March–4 April 2003.
  8. R. O. Knuteson, F. A. Best, D. H. DeSlover, B. J. Osborne, H. E. Revercomb, and W. L. Smith, “Infrared land surface remote sensing using high spectral resolution aircraft observations,” Adv. Space Res. 33, 1114–1119 (2004). [CrossRef]
  9. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996). [CrossRef]
  10. L. Fiedler and S. Bakan, “Interferometric measurements of sea surface temperature and emissivity,” Dtsch. Hydrogr. Z. 49, 357–365 (1997). [CrossRef]
  11. P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The Marine-Atmospheric Emitted Radiance Interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994–1013 (2001). [CrossRef]
  12. S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539–2557 (2005). [CrossRef]
  13. G. Masiello, G. Grieco, C. Serio, and V. Cuomo, “Canopy emissivity characterization from hyper spectral infrared observations,” presented at the 12th Conference on Atmospheric Radiation, Madison, Wisconsin, 10–14 July 2006, http://ams.confex.com/ams/pdfpapers/112642.pdf .
  14. A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113–1126 (1998). [CrossRef]
  15. G. Masiello, C. Serio, and V. Cuomo, “Exploiting quartz spectral signature for the detection of cloud-affected satellite infrared observations over African desert areas,” Appl. Opt. 43, 2305–2315 (2004). [CrossRef]
  16. S. A. Clough, M. W. Shephard, J. Worden, P. D. Brown, H. M. Worden, M. Luo, C. D. Rodgers, C. P. Rinsland, A. Goldman, L. Brown, S. S. Kulawik, A. Eldering, M. Lampel, G. Osterman, R. Beer, K. Bowman, K. E. Cady-Pereira, and E. J. Mlawer, “Forward model and Jacobians for tropospheric emission spectrometer retrievals,” IEEE Trans. Geosci. Remote Sens. 44, 1308–1323 (2006). [CrossRef]
  17. S. W. Seemann, E. F. Borbas, R. O. Knuteson, G. R. Stephenson, and H.-L. Huang, “Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements,” J. Appl. Meteorol. Climatol. 47, 108–123 (2007). [CrossRef]
  18. Z. Wan, “New refinements and validation of the MODIS land-surface temperature/emissivity products,” Remote Sens. Environ. 112, 59–74 (2008). [CrossRef]
  19. G. C. Hulley, S. J. Hook, and A. M. Baldridge, “ASTER land surface emissivity database of California and Nevada,” Geophys. Res. Lett. 35, L13401 (2008). [CrossRef]
  20. E. Péquignot, A. Chédin, and N. A. Scott, “Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor,” J. Appl. Meteorol. Climatol. 47, 1619–1633 (2008). [CrossRef]
  21. G. C. Hulley, S. J. Hook, E. Manning, S.-Y. Lee, and E. Fetzer, “Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts,” J. Geophys. Res. 114, D19104(2009). [CrossRef]
  22. G. C. Hulley and S. J. Hook, “Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia,” Remote Sens. Environ. 113, 1313–1318 (2009). [CrossRef]
  23. G. C. Hulley and S. J. Hook, “The North American ASTER Land Surface Emissivity database (NAALSED) version 2.0,” Remote Sens. Environ. 113, 1967–1975 (2009). [CrossRef]
  24. J. Li, J. Li, E. Weisz, and D. K. Zhou, “Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances,” Geophys. Res. Lett. 34, L16812 (2007). [CrossRef]
  25. L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Remote Sens. 46, 328–333 (2008). [CrossRef]
  26. D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Remote Sens. 49, 1277–1290 (2011). [CrossRef]
  27. X. L. Ma, Z. Wan, C. C. Moeller, W. P. Menzel, and L. E. Gumley, “Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from moderate-resolution imaging spectroradiometer thermal infrared data: extension of a two-step physical algorithm,” Appl. Opt. 41, 909–924 (2002). [CrossRef]
  28. F. Hilton, R. Armante, T. August, C. Barnet, A. Bouchard, C. Camy-Peyret, V. Capelle, L. Clarisse, C. Clerbaux, P.-F. Coheur, A. Collard, C. Crevoisier, G. Dufour, D. Edwards, F. Faijan, N. Fourrié, A. Gambacorta, M. Goldberg, V. Guidard, D. Hurtmans, S. Illingworth, N. Jacquinet-Husson, T. Kerzenmacher, D. Klaes, L. Lavanant, G. Masiello, M. Matricardi, A. McNally, S. Newman, E. Pavelin, S. Payan, E. Péquignot, S. Peyridieu, T. Phulpin, J. Remedios, P. Schlüssel, C. Serio, L. Strow, C. Stubenrauch, J. Taylor, D. Tobin, W. Wolf, and D. Zhou, “Hyperspectral Earth observation from IASI: five years of accomplishments,” Bull. Am. Meteorol. Soc. 93, 347–370 (2012). [CrossRef]
  29. C. Serio, G. Grieco, G. Masiello, U. Amato, and I. De Feis, “Consolidation of scientific baseline for MTG-IRS level 2 processing: role of OE with background state and associated error from climatology: final report” (EUMETSAT, 2010), available online at http://www2.unibas.it/gmasiello/assite/rep/Delivery%2017_final_report.pdf
  30. P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34, 561–580 (1992). [CrossRef]
  31. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).
  32. A. Carissimo, I. De Feis, and C. Serio, “The physical retrieval methodology for IASI: the δ-IASI code,” Environ. Modell. Software 20, 1111–1126 (2005). [CrossRef]
  33. A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation (Elsevier, 1987).
  34. U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Environ. Modell. Software 17, 651–667 (2002). [CrossRef]
  35. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, 1972).
  36. W. M. Elsasser, Heat Transfer by Infrared Radiation in the Atmosphere (Harvard University, 1942).
  37. K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford University, 1992).
  38. M. Matricardi, ECMWF, Reading, UK (personal communication, 2012).
  39. K. Masuda, T. Takashima, and Y. Takayma, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329(1988). [CrossRef]
  40. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).
  41. E. A. Robinson and M. T. Silvia, Digital Foundation of Time Series Analysis: Wave-Equation Space-Time Processing, Vol. 2 (Holden-Day, 1981).
  42. W. C. Snyder and Z. Wan, “BRDF models to predict spectral reflectance and emissivity in the thermal infrared,” IEEE Trans. Geosci. Remote Sens. 36, 214–225 (1998). [CrossRef]
  43. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009). [CrossRef]
  44. G. Masiello, C. Serio, and P. Antonelli, “Inversion for atmospheric thermodynamical parameters of IASI data in the principal components space,” Q. J. R. Meteorol. Soc. 138, 103–117 (2012). [CrossRef]
  45. U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, and H. Kobayashi, “Inverting for geophysical parameters from IMG radiances,” IEEE Trans. Geosci. Remote Sens. 37, 1620–1632 (1999). [CrossRef]
  46. A. M. Lubrano, C. Serio, S. A. Clough, and H. Kobayashi, “Simultaneous inversion for temperature and water vapor from IMG radiances,” Geophys. Res. Lett. 27, 2533–2536(2000). [CrossRef]
  47. G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectrosc. Radiat. Transfer 77, 131–148 (2003). [CrossRef]
  48. U. Amato, A. Antoniadis, I. De Feis, G. Masiello, M. Matricardi, and C. Serio, “Technical note: Functional sliced inverse regression to infer temperature, water vapour and ozone from IASI data,” Atmos. Chem. Phys. 9, 5321–5330 (2009). [CrossRef]
  49. G. Masiello, C. Serio, A. Carissimo, G. Grieco, and M. Matricardi, “Application of φ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atmos. Chem. Phys. 9, 8771–8783 (2009). [CrossRef]
  50. G. Grieco, G. Masiello, and C. Serio, “Interferometric vs spectral IASI radiances: effective data-reduction approaches for the satellite sounding of atmospheric thermodynamical parameters,” Remote Sens. 2, 2323–2346 (2010). [CrossRef]
  51. G. Masiello, M. Matricardi, and C. Serio, “The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere,” Atmos. Chem. Phys. 11, 1009–1021 (2011). [CrossRef]
  52. G. Masiello, M. Amoroso, P. Di Girolamo, C. Serio, S. Venafra, and T. Deleporte, “IASI Retrieval of temperature, water vapor and ozone profiles over land with φ-IASI package during the COPS campaign,” in Proceedings of the 9th International Symposium on Tropospheric Profiling (ESA, 2012), http://cetemps.aquila.infn.it/istp/proceedings/Session_I_Water_vapor_ozone_and_trace_gases/SI_02_Masiello.pdf .
  53. V. Wulfmeyer, A. Behrendt, H.-S. Bauer, C. Kottmeier, U. Corsmeier, A. Blyth, G. Craig, U. Schumann, M. Hagen, S. Crewell, P. Di Girolamo, C. Flamant, M. Miller, A. Montani, S. Mobbs, E. Richard, M. W. Rotach, M. Arpagaus, H. Russchenberg, P. Schlüssel, M. König, V. Gärtner, R. Steinacker, M. Dorninger, D. D. Turner, T. Weckwerth, A. Hense, and C. Simmer, “The Convective and Orographically Induced Precipitation Study: a research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions,” Bull. Am. Meteorol. Soc. 89, 1477–1486 (2008). [CrossRef]
  54. J. P. Taylor, “Facility for Airborne Atmospheric Measurements (FAAM): Joint Airborne IASI (Infrared Atmospheric Sounding Interferometer) Validation Experiment (JAIVEX) measurements,” http://badc.nerc.ac.uk/data/jaivex/ .
  55. N. Lancaster, “Grain size characteristics of Namib Desert linear dunes,” Sedimentology 28, 115–122 (1981). [CrossRef]
  56. K. White, J. Walden, and S. D. Gurney, “Spectral properties, iron oxide content and provenance of Namib dune sands,” Geomorphology 86, 219–229 (2007). [CrossRef]
  57. E. D. McKee, ed., “A study of global sand seas: Ancient sandstones considered to be Eolian,” US Geological Survey Professional Paper Nr. 1052 (US Geological Survey, 1979).
  58. G. Masiello, C. Serio, F. Esposito, and L. Palchetti, “Validation of line and continuum spectroscopic parameters with measurements of atmospheric emitted spectral radiance from far to mid infrared wave number range,” J. Quant. Spectrosc. Radiat. Transfer 113, 1286–1299 (2012). [CrossRef]
  59. V. G. Tyuterev, A. M. Perrin, and L. S. Rothman, eds., “Three leaders in spectroscopy,” (Special Issue), J. Quant. Spectrosc. Radiat. Transfer 113, 821–1406 (2012). [CrossRef]
  60. I. De Feis, G. Masiello, C. Serio, M. Amoroso, and S. Venafra, “Spatio-temporal constraints for emissivity and surface temperature retrieval: preliminary results and comparisons for SEVIRI and IASI observations,” presented at the 3rd IASI International Conference, Hyères, France, 4–8 February 2013, available online at http://www.iasi2013.com/oral/08_03-De_Feis_Italia.pdf .
  61. M. Belge, M. E. Kilmer, and E. L. Miller, “Efficient determination of multiple regularization parameters in a generalized L-curve framework,” Inverse Probl. 18, 1161–1183 (2002). [CrossRef]
  62. E. E. Borbas and B. C. Ruston, “The RTTOV UWiremis IR land surface emissivity module,” Doc. NWPSAF-MO-VS-042 (EUMETSAT, 2010).
  63. H. Flanders, Differential Forms with Applications to the Physical Sciences (Dover, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited