OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2454–2469

High-power Ti:sapphire laser at 820 nm for scanning ground-based water–vapor differential absorption lidar

Gerd Wagner, Andreas Behrendt, Volker Wulfmeyer, Florian Späth, and Max Schiller  »View Author Affiliations


Applied Optics, Vol. 52, Issue 11, pp. 2454-2469 (2013)
http://dx.doi.org/10.1364/AO.52.002454


View Full Text Article

Enhanced HTML    Acrobat PDF (7246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Ti:sapphire (TISA) laser transmitter of the mobile, three-dimensional-scanning water–vapor differential absorption lidar (DIAL) of the University of Hohenheim is described in detail. The dynamically-stable, unidirectional ring resonator contains a single Brewster-cut TISA crystal, which is pumped from both sides with 250 Hz using a diode-pumped frequency-doubled Nd:YAG laser. The resonator is injection seeded and actively frequency-stabilized using a phase-sensitive technique. The TISA laser is operating near 820 nm, which is optimum for ground-based water–vapor DIAL measurements. An average output power of up to 6.75 W with a beam quality factor of M 2 < 2 is reached. The pointing stability is < 13 μrad (rms), the depolarization < 1 % . The overall optical–optical conversion efficiency is up to 19%. The pulse length is 40 ns with a pulse linewidth of < 157 MHz . The short- and long-term frequency stabilities are 10 MHz (rms). A spectral purity of 99.9% was determined by pointing to a stratus cloud in low-elevation scanning mode with a cloud bottom height of 2.4 km .

© 2013 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3590) Lasers and laser optics : Lasers, titanium
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: December 18, 2012
Manuscript Accepted: February 22, 2013
Published: April 10, 2013

Citation
Gerd Wagner, Andreas Behrendt, Volker Wulfmeyer, Florian Späth, and Max Schiller, "High-power Ti:sapphire laser at 820 nm for scanning ground-based water–vapor differential absorption lidar," Appl. Opt. 52, 2454-2469 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-11-2454


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, 12–24 April, Environmental Research Institute of Michigan (University of Michigan, 1966), pp. 273–283.
  2. E. V. Browell, T. D. Wilkerson, and T. J. Mcilrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979). [CrossRef]
  3. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  4. V. Wulfmeyer, and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998). [CrossRef]
  5. The HITRAN Database URL, http://www.cfa.harvard.edu/hitran/ .
  6. S. Ismail, and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989). [CrossRef]
  7. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998). [CrossRef]
  8. É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004). [CrossRef]
  9. V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005). [CrossRef]
  10. A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007). [CrossRef]
  11. A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007). [CrossRef]
  12. R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the convective and orographically-induced precipitation study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011). [CrossRef]
  13. “GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN),” http://www.wmo.int/pages/prog/gcos/index.php?name=GRUAN .
  14. W. Eichinger, D. Cooper, J. Kao, L. C. Chen, L. Hipps, and J. Prueger, “Estimation of spatially distributed latent heat flux over complex terrain from a Raman lidar,” Agr. For. Meteorol. 105, 145–159 (2000). [CrossRef]
  15. D. I. Cooper, W. E. Eichinger, J. Archuleta, L. Hipps, C. M. U. Neale, and J. H. Prueger, “An advanced method for deriving latent energy flux from a scanning Raman lidar,” Agron. J. 99, 272–284 (2007). [CrossRef]
  16. V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck C, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30(2011). [CrossRef]
  17. C. Hauck, C. Barthlott, L. Krauss, and N. Kalthoff, “Soil moisture variability and its influence on convective precipitation over complex terrain,” Q. J. R. Meteorol. Soc. 137, 42–56 (2011). [CrossRef]
  18. V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water vapor DIAL and Radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999). [CrossRef]
  19. V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Boundary-Layer Meteorol. 136, 253–284 (2010). [CrossRef]
  20. C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. Di Girolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011). [CrossRef]
  21. N. Kalthoff, K. Träumner, S. Späth, B. Adler, A. Wieser, J. Handwerker, A. Behrendt, F. Madonna, and V. Wulfmeyer, “Dry and moist convection in the boundary layer over the Black Forest—a combined analysis of in-situ and remote sensing data,” Meteorol. Z (2013) (to be published).
  22. A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011). [CrossRef]
  23. R. Kamineni, T. N. Krishnamurti, R. A. Ferrare, S. Ismail, and E. V. Browell, “Impact of high resolution water vapor cross-sectional data on hurricane forecasting,” Geophys. Res. Lett. 30, 1234–1237 (2003). [CrossRef]
  24. V. Wulfmeyer, H.-S. Bauer, M. Grzeschik, A. Behrendt, F. Vandenberghe, E. V. Browell, S. Ismail, and R. Ferrare, “Four-dimensional variational assimilation of water vapor differential absorption lidar data. The first case study within IHOP 2002,” Mon. Weather Rev. 134, 209–230 (2006). [CrossRef]
  25. M. Grzeschik, H.-S. Bauer, V. Wulfmeyer, D. Engelbart, U. Wandinger, I. Mattis, D. Althausen, R. Engelmann, M. Tesche, and A. Riede, “Four-dimensional variational data analysis of water vapor Raman lidar data and their impact on mesoscale forecasts,” J. Atmos. Ocean. Technol. 25, 1437–1453 (2008). [CrossRef]
  26. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002). [CrossRef]
  27. D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II: case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006). [CrossRef]
  28. D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010). [CrossRef]
  29. J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131 (2012). [CrossRef]
  30. “LASE Project,” http://asd-www.larc.nasa.gov/lase/ASDlase.html .
  31. R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004). [CrossRef]
  32. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991). [CrossRef]
  33. D. Bruneau, T. Arnaud des Lions, P. Quaglia, and J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994). [CrossRef]
  34. D. Bruneau, P. Quaglia, C. Flament, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001). [CrossRef]
  35. D. Bruneau, P. Quaglia, C. Flament, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462–3475 (2001). [CrossRef]
  36. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002). [CrossRef]
  37. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201–213 (2009). [CrossRef]
  38. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, and St. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995). [CrossRef]
  39. V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996). [CrossRef]
  40. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998). [CrossRef]
  41. K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120–5126 (2005). [CrossRef]
  42. H. Vogelmann and T. Trickl, “Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station,” Appl. Opt. 47, 2116–2132 (2008). [CrossRef]
  43. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121(2004). [CrossRef]
  44. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor: errata,” Appl. Opt. 45, 3544 (2006). [CrossRef]
  45. A. Dinovitser, M. W. Hamilton, and R. A. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010). [CrossRef]
  46. A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009). [CrossRef]
  47. M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 043515 (2010). [CrossRef]
  48. A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Micropulse water vapor differential absorption lidar: transmitter design performance,” Opt. Express 20, 25137–25151 (2012). [CrossRef]
  49. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  50. W. R. Rapoport and C. P. Khattak, “Titanium sapphire laser characteristics,” Appl. Opt. 27, 2677–2684 (1988). [CrossRef]
  51. V. Wulfmeyer, A. Behrendt, H.-S. Bauer, C. Kottmeier, U. Corsmeier, A. Blyth, G. Craig, U. Schumann, M. Hagen, S. Crewell, P. Di Girolamo, C. Flamant, M. Miller, A. Montani, S. Mobbs, E. Richard, M. W. Rotach, M. Arpagaus, H. Russchenberg, P. Schlüssel, M. König, V. Gärtner, R. Steinacker, M. Dorninger, D. D. Turner, T. Weckwerth, A. Hense, and C. Simmer, “RESEARCH CAMPAIGN: the convective and orographically induced precipitation study: a research and development project of the world weather research program for improving quantitative precipitation forecasting in low-mountain regions,” Bull. Am. Meteorol. Soc. 89, 1477–1486 (2008). [CrossRef]
  52. COPS Field Campaign, “COPS: Convective and Orographically-induced Precipitation Study,” http://www.uni-hohenheim.de/cops .
  53. A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-Dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009). [CrossRef]
  54. FLUXPAT 2009 within SFB TR 32, “Transregional Collaborative Research Centre 32,” http://www.tr32.uni-koeln.de .
  55. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320 (2001). [CrossRef]
  56. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001). [CrossRef]
  57. G. Wagner, V. Wulfmeyer, and A. Behrendt, “Detailed performance modeling of a pulsed high-power single-frequency Ti:sapphire laser,” Appl. Opt. 50, 5921–5937 (2011). [CrossRef]
  58. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  59. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef]
  60. J. P. Lörtscher and J. Steffen, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975). [CrossRef]
  61. H. P. Kortz, R. Iffländer, and H. Weber, “Stability and beam divergence of multimode lasers with internal variable lenses,” Appl. Opt. 20, 4124–4134 (1981). [CrossRef]
  62. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986). [CrossRef]
  63. D. Metcalf, P. de Giovanni, J. Zachorowski, and M. Leduc, “Laser resonators containing self-focusing elements,” Appl. Opt. 26, 4508–4517 (1987). [CrossRef]
  64. W. Koechner, “Longitudinal modes,” in Solid-State Laser Engineering, T. Tamir and A. L. Schawlow, eds., (Springer-Verlag, 1999), pp. 236–259.
  65. A. Riede, A. Behrendt, V. Wulfmeyer, D. Althausen, U. Wandinger, V. Klein, A. Meister, and M. Schiller, “Transmitter-receiver unit of the UHOH water vapor DIAL with a scanning 800 mm telescope mirror,” in Proceedings of the 26th International Laser and Radar Conference (ILRC), Porto Heli, Greece, 25–29 June (International Coordination-group on Laser Atmospheric Studies, 2012), paper S1P-12.
  66. A. Behrendt, V. Wulfmeyer, A. Riede, F. Späth, S. Metzendorf, G. Wagner, S. Pal, and M. Schiller are preparing a manuscript to be called “3D-scanning, water-vapor DIAL of Hohenheim University”.
  67. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005). [CrossRef]
  68. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system—erratum,” Appl. Opt. 44, 7451 (2005). [CrossRef]
  69. V. Wulfmeyer, M. Randall, A. Brewer, and R. M. Hardesty, “2 μm Doppler lidar transmitter with high frequency stability and low chirp,” Opt. Lett. 25, 1228–1230 (2000). [CrossRef]
  70. “IBL Innovative Berlin Laser GmbH,” http://www.ib-laser.com/ .
  71. H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009). [CrossRef]
  72. F. Späth, “Development of injection seeders for water vapor and carbon dioxide DIAL systems based on DFB lasers,” Diploma thesis (in German) (University of Stuttgart, 2010).
  73. F. Späth, G. Wagner, H.-D. Wizemann, A. Behrendt, and V. Wulfmeyer, “Injection seeders based on DFB lasers for DIAL of water vapor at 820 nm and CO2 at 1580 nm,” in Proceedings of the 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July (International Coordination-group on Laser Atmospheric Studies, 2010), pp. 231–234.
  74. R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Miletti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477–485 (2006). [CrossRef]
  75. F. Späth, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/offine injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. (2012) (in revision).
  76. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985). [CrossRef]
  77. R. L. Schmitt and L. A. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629–633(1986). [CrossRef]
  78. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007). [CrossRef]
  79. S. W. Henderson, E. H. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986). [CrossRef]
  80. T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001). [CrossRef]
  81. P. Esherick and A. Owyoung, “Polarization feedback stabilization of an injection-seeded Nd:YAG laser for spectroscopic applications,” J. Opt. Soc. Am. B 4, 41–47(1987). [CrossRef]
  82. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980). [CrossRef]
  83. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  84. A. Strässer, T. Waltinger, and M. Ostermeyer, “Injection seeded frequency stabilized Nd:YAG ring oscillator following a Pound-Drever-Hall scheme,” Appl. Opt. 46, 8358–8363 (2007). [CrossRef]
  85. M. Ostermeyer, T. Waltinger, and M. Gregor, “Frequency stabilization of a Q-switched Nd:YAG laser oscillator with stability better 300 kHz following an rf-sideband scheme,” Opt. Commun. 282, 3302–3307 (2009). [CrossRef]
  86. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990). [CrossRef]
  87. Fibertech, LEONI Fiber Optics GmbH, http://www.fibertech.de/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited