OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2470–2477

Laser ablation–laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils

Jhon Pareja, Sebastian López, Daniel Jaramillo, David W. Hahn, and Alejandro Molina  »View Author Affiliations

Applied Optics, Vol. 52, Issue 11, pp. 2470-2477 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

© 2013 Optical Society of America

OCIS Codes
(160.2120) Materials : Elements
(160.4890) Materials : Organic materials
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: December 10, 2012
Revised Manuscript: March 5, 2013
Manuscript Accepted: March 5, 2013
Published: April 10, 2013

Jhon Pareja, Sebastian López, Daniel Jaramillo, David W. Hahn, and Alejandro Molina, "Laser ablation–laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils," Appl. Opt. 52, 2470-2477 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Barker and D. Pilbeam, Handbook of Plant Nutrition (CRC, 2006), pp. 3–18.
  2. R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010). [CrossRef]
  3. H. Auernhammer, “Precision farming—the environmental challenge,” Comput. Electron. Agric. 30, 31–43 (2001). [CrossRef]
  4. V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric. 44, 71–91 (2004). [CrossRef]
  5. D. A. Cremers and L. J. Radziemski, “Basics of the LIBS plasma,” in Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006), pp. 23–52.
  6. R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994). [CrossRef]
  7. A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1175–1181 (1996). [CrossRef]
  8. B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582–1589 (2007). [CrossRef]
  9. M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008). [CrossRef]
  10. S. Pandhija and A. Rai, “Laser-induced breakdown spectroscopy: a versatile tool for monitoring traces in materials,” Pramana 70, 553–563 (2008). [CrossRef]
  11. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazar. Mater. 163, 1265–1271 (2009). [CrossRef]
  12. J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009). [CrossRef]
  13. D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009). [CrossRef]
  14. G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009). [CrossRef]
  15. J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001). [CrossRef]
  16. V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001). [CrossRef]
  17. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008). [CrossRef]
  18. Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 65, 744–749 (2010). [CrossRef]
  19. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011). [CrossRef]
  20. M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009). [CrossRef]
  21. D. Diaz, D. W. Hahn, and A. Molina, “Evaluation of laser-induced breakdown spectroscopy (LIBS) as a measurement technique for evaluation of total elemental concentration in soils,” Appl. Spectrosc. 66, 99–106 (2012). [CrossRef]
  22. B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24, 1665–1675 (2009). [CrossRef]
  23. P. K. Diwakar, K. H. Loper, A.-M. Matiaske, and D. W. Hahn, “Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles,” J. Anal. At. Spectrom. 27, 1110–1119 (2012). [CrossRef]
  24. Soil Survey Staff. 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (United States Department of Agriculture, 1999).
  25. D. L. Sparks, Methods of Soil Analysis. Part 3, Chemical Methods (Soil Science Society of America, 1996).
  26. J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002). [CrossRef]
  27. V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species,” Anal. Chem. 77, 1118–1124 (2005). [CrossRef]
  28. B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Anal. Chem. 55, 1312–1319 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: CSV (0 KB)     
» Media 2: CSV (6 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited