OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2494–2502

Recipes to make organic phantoms for diffusive optical spectroscopy

Giovanna Quarto, Antonio Pifferi, Ilaria Bargigia, Andrea Farina, Rinaldo Cubeddu, and Paola Taroni  »View Author Affiliations


Applied Optics, Vol. 52, Issue 11, pp. 2494-2502 (2013)
http://dx.doi.org/10.1364/AO.52.002494


View Full Text Article

Enhanced HTML    Acrobat PDF (574 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three recipes are presented to make tissue constituent-equivalent phantoms of water and lipids. Different approaches to prepare the emulsion are proposed. Nature phantoms are made using no emulsifying agent, but just a professional disperser; instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and lipids. Different water-to-lipid ratios ranging from 30% to 70% by mass were tested. A broadband time-resolved diffuse optical spectroscopy system was used to characterize the phantoms in terms of optical properties and composition. For some water/lipid ratios the emulsion fails or the phantom has limited lifetime, but in most cases the recipes provide phantoms with a high degree of homogeneity [coefficient of variation (CV) of 4.6% and 1.5% for the absorption and reduced scattering coefficient, respectively] and good reproducibility (CV of 8.3% and 12.4% for absorption and reduced scattering coefficient, respectively).

© 2013 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(170.7050) Medical optics and biotechnology : Turbid media
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Spectroscopy

History
Original Manuscript: December 20, 2012
Revised Manuscript: February 18, 2013
Manuscript Accepted: March 6, 2013
Published: April 10, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Giovanna Quarto, Antonio Pifferi, Ilaria Bargigia, Andrea Farina, Rinaldo Cubeddu, and Paola Taroni, "Recipes to make organic phantoms for diffusive optical spectroscopy," Appl. Opt. 52, 2494-2502 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-11-2494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hwang, J. C. Ramella-Roman, and R. Nordstrom, “Introduction: feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices,” Biomed. Opt. Express 3, 1399–1403 (2012). [CrossRef]
  2. J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995). [CrossRef]
  3. M. O’ Leary, D. Boas, B. Chance, and A. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef]
  4. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997). [CrossRef]
  5. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006). [CrossRef]
  6. S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).
  7. R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010). [CrossRef]
  8. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010). [CrossRef]
  9. S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996). [CrossRef]
  10. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005). [CrossRef]
  11. P. A. Hardy, R. S. Hinks, and J. A. Tkach, “Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique,” J. Magn. Reson. Imaging 5, 181–185(1995). [CrossRef]
  12. C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008). [CrossRef]
  13. H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991). [CrossRef]
  14. E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004). [CrossRef]
  15. D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005). [CrossRef]
  16. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003). [CrossRef]
  17. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003). [CrossRef]
  18. H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002). [CrossRef]
  19. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000). [CrossRef]
  20. X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12, 934–947 (2005). [CrossRef]
  21. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007). [CrossRef]
  22. C. Byrne, “Studying mammographic density: implications for understanding breast cancer,” J. Natl. Cancer Inst. 89, 531 (1997).
  23. V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomark. Prev. 15, 1159 (2006). [CrossRef]
  24. F. Martelli, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010).
  25. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997). [CrossRef]
  26. A. M. K. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998). [CrossRef]
  27. C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006). [CrossRef]
  28. A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63, 48–56 (2009). [CrossRef]
  29. UCL, “Specific extinction spectra of tissue chromophores,” http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/spectra/spectra.htm .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited