OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2511–2520

Retrieval of relevant parameters of natural multilayer systems by means of bio-inspired optimization strategies

Demetrio Macías, Ana Luna, Diana Skigin, Marina Inchaussandague, Alexandre Vial, and Daniel Schinca  »View Author Affiliations

Applied Optics, Vol. 52, Issue 11, pp. 2511-2520 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (818 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Natural photonic structures exhibit remarkable color effects such as metallic appearance and iridescence. A rigorous study of the electromagnetic response of such complex structures requires to accurately determine some of their relevant optical parameters, such as the refractive indices of the materials involved. In this paper, we apply different heuristic optimization strategies to retrieve the real and imaginary parts of the refractive index of the materials comprising natural multilayer systems. Through some examples, we compare the performances of the inversion methods proposed and show that these kinds of algorithms have a great potential as a tool to investigate natural photonic structures.

© 2013 Optical Society of America

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: January 3, 2013
Revised Manuscript: February 26, 2013
Manuscript Accepted: February 27, 2013
Published: April 10, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Demetrio Macías, Ana Luna, Diana Skigin, Marina Inchaussandague, Alexandre Vial, and Daniel Schinca, "Retrieval of relevant parameters of natural multilayer systems by means of bio-inspired optimization strategies," Appl. Opt. 52, 2511-2520 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Parker, “515 million years of structural colour,” J. Opt. A 2, R15–R28 (2000). [CrossRef]
  2. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003). [CrossRef]
  3. S. Berthier, Iridescences, the Physical Colours of Insects (Springer Science+Business Media, LLC, 2007).
  4. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).
  5. H. M. Fox and G. Vevers, The Nature of Animal Colours(Sidgwick and Jackson, 1960).
  6. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009). [CrossRef]
  7. S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228, 349–356 (2003). [CrossRef]
  8. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morphobutterfly scales,” Proc. R. Soc. Lond. B 266, 1403–1411(1999). [CrossRef]
  9. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19, 24061–24066 (2011). [CrossRef]
  10. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15, 4351–4357 (2007). [CrossRef]
  11. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011). [CrossRef]
  12. H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012). [CrossRef]
  13. S. Berthier, J. Boulenguez, and Z. Bálint, “Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes,” App. Phys. A 86, 123–130 (2007). [CrossRef]
  14. D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-field optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004). [CrossRef]
  15. D. Macías, G. Olague, and E. R. Méndez, “Inverse scattering with far-field intensity data: random surfaces that belong to a well-defined statistical class,” Waves Random Complex Media 16, 545–560 (2006). [CrossRef]
  16. A. B. Djurišic, J. M. Elazar, and A. D. Rakic, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997). [CrossRef]
  17. A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with the FDTD method,” Phys. Rev. B 71, 085416 (2005). [CrossRef]
  18. D. Macías and A. Vial, “Optimal design of plasmonic nanostructures for plasmon-interference assisted lithography,” Appl. Phys. B 93, 159–163 (2008). [CrossRef]
  19. D. Barchiesi, D. Macas, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008). [CrossRef]
  20. A. Tassadit, D. Macías, J. A. Sánchez-Gil, P.-M. Adam, and R. Rodriguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microstruct. 49, 288–293 (2011). [CrossRef]
  21. D. Macías, P.-M. Adam, V. Ruiz-Cortés, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties,” Opt. Express 20, 13146–13163 (2012). [CrossRef]
  22. K. R. Thomas, M. Kolle, H. M. Whitney, B. J. Glover, and U. Steiner, “Function of blue iridescence in tropical understorey plants,” J. R. Soc. Interface 7, 1699–1707 (2010). [CrossRef]
  23. M. F. Land, J. Horwood, M. L. M. Lim, and D. Li, “Optics of the ultraviolet reflecting scales of a jumping spider,” Proc. R. Soc. B 274, 1583–1589 (2007). [CrossRef]
  24. T. D. Schultz and M. A. Rankin, “The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cicindela),” J. Exp. Biol. 117, 87–110 (1985).
  25. K. Miyamoto and A. Kosaku, “Cuticular microstructures and their relationship to structural color in the Shieldbug Poecilocoris lewisi distant,” Forma 17, 155–167 (2002).
  26. J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Birø, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E 73, 041905 (2006). [CrossRef]
  27. A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009). [CrossRef]
  28. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. Biol. Sci. 366, 709–723 (2011). [CrossRef]
  29. H. G. Beyer, The Theory of Evolution Strategies (Springer, 2001).
  30. R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43.
  31. J. H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan, 1975).
  32. H.-P. Schwefel, Evolution and Optimum Seeking (Wiley-Interscience, 1995).
  33. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag. 52, 397–407 (2004). [CrossRef]
  34. R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: an overview,” Swarm Intell. 1, 33–57 (2007). [CrossRef]
  35. P. Yeh and A. Yariv, Optical Waves in Crystals (Wiley, 1984).
  36. A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE 7782, 778205 (2010). [CrossRef]
  37. ImageJ is a public domain, Java-based image processing program, http://rsbweb.nih.gov/ij/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited