OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2564–2569

Influence of arrangement order ratio on the magneto-optical properties of one-dimensional microcavity structures

Abdolrahman Namdar, Reza Abdi-Ghaleh, and Kazem Jamshidi-Ghaleh  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2564-2569 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dependence of the optical responses of microcavity-type one-dimensional (1D) photonic crystals and 1D magnetophotonic crystals (1D-MPCs) on the arrangement order ratio (AOR), which is the ratio of the first and second layers’ refractive indexes of Bragg reflectors, is studied. It is demonstrated that the optical properties of two microcavity structures resulting from exchanging the order of Bragg reflector layers so that they have the same optical contrast ratios and different AORs would be different. This difference will be more noticeable in the case of microcavity type 1D-MPCs. Regarding the arrangement-dependent magneto-optical properties of the structures, we can propose the efficient Bragg reflectors with high transmittance enhanced Faraday rotation.

© 2013 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.2240) Optical devices : Faraday effect
(160.5298) Materials : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: December 19, 2012
Revised Manuscript: February 11, 2013
Manuscript Accepted: March 15, 2013
Published: April 12, 2013

Abdolrahman Namdar, Reza Abdi-Ghaleh, and Kazem Jamshidi-Ghaleh, "Influence of arrangement order ratio on the magneto-optical properties of one-dimensional microcavity structures," Appl. Opt. 52, 2564-2569 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Rayleigh, “On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes,” Philos. Mag. 26(160), 256–265 (1888). [CrossRef]
  2. D. R. Scifres, R. D. Burnham, and W. Streifer, “Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed-feedback lasers,” Appl. Phys. Lett. 26, 48–50 (1975). [CrossRef]
  3. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection Lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef]
  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  6. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996). [CrossRef]
  7. R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical Faraday rotator,” Appl. Opt. 3, 1079–1083 (1964). [CrossRef]
  8. M. Faraday, “Experimental researches in electricity. Nineteenth Series,” Phil. Trans. R. Soc. London 136, 1–20 (1846). [CrossRef]
  9. M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5770 (1999). [CrossRef]
  10. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006). [CrossRef]
  11. A. G. Zhdanov, A. A. Fedyanin, O. A. Aktsipetrov, D. Kobayashi, H. Uchida, and M. Inoue, “Enhancement of Faraday rotation at photonic-band-gap edge in garnet-based magnetophotonic crystals,” J. Magn. Magn. Mater. 300, e253–e256 (2006). [CrossRef]
  12. I. L. Lyubchanskii, N. N. Dadoenkova, A. E. Zabolotin, Y. P. Lee, and Th. Rasing, “Optical bistability in one-dimensional magnetic photonic crystal with two defect layers,” J. Appl. Phys. 103, 07B321 (2008). [CrossRef]
  13. T. V. Murzina, I. E. Razdolski, O. A. Aktsipetrov, A. M. Grishin, and S. I. Khartsev, “Nonlinear magneto-optical effects in all-garnet magnetophotonic crystals,” J. Magn. Magn. Mater. 321, 836–839 (2009). [CrossRef]
  14. T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A 375, 2185–2188 (2011). [CrossRef]
  15. L. Dong, H. Jiang, H. Chen, and Y. Shi, “Tunnelling-based Faraday rotation effect enhancement,” J. Phys. D 44, 145402 (2011). [CrossRef]
  16. T. Goto and M. Inoue, “Magnetophotonic crystal comprising electro-optical layer for controlling helicity of light, Magnetophotonic crystal comprising electro-optical layer for controlling helicity of light,” J. Appl. Phys. 111, 07A913 (2012). [CrossRef]
  17. M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” Appl. Opt. 51, 4873–4878(2012). [CrossRef]
  18. V. Dmitriev and M. N. Kawakatsu, “Nonreciprocal optical divider based on two-dimensional photonic crystal and magneto-optical cavity,” Appl. Opt. 51, 5917–5920 (2012). [CrossRef]
  19. M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE Photon. Technol. Lett. 12, 1171–1173 (2000). [CrossRef]
  20. M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat top response in one-dimensional magnetic photonic band gap structures with Faraday rotation enhancement,” J. Lightwave Technol. 19, 1964–1969 (2001). [CrossRef]
  21. S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84, 1438–1440 (2004). [CrossRef]
  22. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun. 102, 165–173 (1997). [CrossRef]
  23. F. Abeles, “Recherches sur la propagation des ondes electro-magnetiques,” Ann. Chim. Phys. 5, 596–640 and 706–782 (1950).
  24. S. Sakaguchi and N. Sugimoto, “Transmission properties of multilayer films composed of magneto-optical and dielectric materials,” J. Lightwave Technol. 17, 1087–1092 (1999). [CrossRef]
  25. M. Inoue and T. Fujii, “A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structures,” J. Appl. Phys. 81, 5659–5661 (1997). [CrossRef]
  26. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  28. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  29. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  30. S. I. Khartsev and A. M. Grishin, “High performance [Bi3Fe5O12/Sm3Ga5O12]m magneto-optical photonic crystals,” J. Appl. Phys. 101, 053906 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited