OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2570–2576

Distortion tolerant correlation filter design

Kaveh Heidary  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2570-2576 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper introduces a computationally efficient algorithm for synthesis of a distortion tolerant correlation filter and associated threshold, denoted collectively as the enhanced matched filter (EMF). Application areas of EMF include imagery based automatic target detection and recognition and biometrics. The EMF is synthesized from a set of training images characterizing the target of interest within the expected distortion range. A distinguishing feature of EMF is the ascribed threshold, which is a byproduct of the filter computation process and does not rely on nontarget trainers. The EMF performance is compared to that of the synthetic discriminant function using realistic test scenarios.

© 2013 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.0100) Image processing : Image processing
(150.0150) Machine vision : Machine vision

ToC Category:
Image Processing

Original Manuscript: January 11, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 11, 2013
Published: April 12, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Kaveh Heidary, "Distortion tolerant correlation filter design," Appl. Opt. 52, 2570-2576 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960). [CrossRef]
  2. A. VanderLugt, “Signal detection by complex filters,” IEEE Trans. Inf. Theory 10, 139–145 (1964). [CrossRef]
  3. L. M. Novak, G. Owirka, and C. Netishen, “Radar target identification using spatial matched filters,” Pattern Recogn. 27, 607–617 (1994). [CrossRef]
  4. A. Papoulis, Signal Analysis (McGraw-Hill, 1977).
  5. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).
  6. A. VanderLugt, Optical Signal Processing (Wiley, 1992).
  7. A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: illumination cone models for face recognition under variable lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 643–660 (2001). [CrossRef]
  8. D. Hao, S. M. Seitz, and N. Snavely, “The dimensionality of scene appearance,” in Proceedings of the 12th International Conference on Computer Vision (IEEE, 2009), pp. 1917–1924.
  9. T. M. Caelli and Z. Q. Liu, “On the minimum number of templates required for shift, rotation and size invariant pattern recognition,” Pattern Recogn. 21, 205–216 (1988). [CrossRef]
  10. H. J. Caulfield and W. Maloney, “Improved discrimination in optical character recognition,” Appl. Opt. 8, 2354–2356 (1969). [CrossRef]
  11. H. J. Caulfield and M. H. Weinberg, “Computer recognition of 2-D patterns using generalized matched filters,” Appl. Opt. 21, 1699–1704 (1982). [CrossRef]
  12. K. Heidary and H. J. Caulfield, “Application of supergeneralized matched filters to target classification,” Appl. Opt. 44, 47–54 (2005). [CrossRef]
  13. R. B. Johnson and K. Heidary, “A unified approach for database analysis and application to ATR performance metrics,” Proc. SPIE 7696, 76960Z (2011). [CrossRef]
  14. K. Heidary and H. J. Caulfield, “Needles in a haystack: fast spatial search for targets in similar-looking backgrounds,” J. Franklin Inst. 349, 2935–2955 (2012). [CrossRef]
  15. D. Casasent and D. Psaltis, “Scale invariant correlation using Mellin transforms,” Opt. Commun. 17, 59–63 (1976). [CrossRef]
  16. T. D. Wilkinson, D. C. O’Brien, and R. J. Mears, “Scale-invariant binary phase-only matched filter using a ferroelectric-liquid-crystal spatial light modulator,” Appl. Opt. 33, 4452–4453 (1994). [CrossRef]
  17. D. Mendlovic, E. Marom, and N. Konforti, “Improved rotation or scale invariant matched filter,” Appl. Opt. 28, 3814–3819 (1989). [CrossRef]
  18. J. Rosen and J. Shamir, “Scale invariant pattern recognition with logarithmic radial harmonic filters,” Appl. Opt. 28, 240–244 (1989). [CrossRef]
  19. C. F. Hester and D. Casasent, “Multivariant technique for multiclass pattern recognition,” Appl. Opt. 19, 1758–1761 (1980). [CrossRef]
  20. A. Mahalanobis, B. V. K. Kumar, and D. Casasent, “Minimum average correlation energy filters,” Appl. Opt. 26, 3633–3640 (1987). [CrossRef]
  21. Z. Bahri and B. V. K. Kumar, “Generalized synthetic discriminant functions,” J. Opt. Soc. Am. 5, 562–571(1988). [CrossRef]
  22. A. Mahalanobis, B. V. K. Kumar, S. Song, S. R. Sims, and J. F. Epperson, “Unconstrained correlation filters,” Appl. Opt. 33, 3751–3759 (1994). [CrossRef]
  23. A. Mahalanobis, A. V. Forman, N. Day, M. Bower, and R. Cherry, “Multi-class SAR ATR using shift-invariant correlation filters,” Pattern Recogn. 27, 619–626 (1994). [CrossRef]
  24. S. H. Hong and B. Javidi, “Optimum nonlinear composite filter for distortion-tolerant pattern recognition,” Appl. Opt. 41, 2172–2178 (2002). [CrossRef]
  25. S. Rehman, P. Bone, R. Young, and C. Chatwin, “Object detection and recognition in cluttered scenes using fully scale and in-plane invariant synthetic discriminant function filters,” J. Comput. Inf. Sci. 1, 15–18 (2007).
  26. J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, “The Amsterdam library of object images,” Int. J. Comput. Vis. 61, 103–112 (2005). [CrossRef]
  27. http://staff.science.uva.nl/~aloi/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited