OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2595–2601

Transmission degradation and preservation for tapered optical fibers in rubidium vapor

Meimei Lai, James D. Franson, and Todd B. Pittman  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2595-2601 (2013)
http://dx.doi.org/10.1364/AO.52.002595


View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of subwavelength diameter tapered optical fibers (TOFs) in warm rubidium vapor has recently been identified as a promising system for realizing ultralow-power nonlinear optical effects. However, at the relatively high atomic densities needed for many of these experiments, rubidium atoms accumulating on the TOF surface can cause a significant loss of overall transmission through the fiber. Here we report direct measurements of the time scale associated with this transmission degradation for various rubidium density conditions. Transmission is affected almost immediately after the introduction of rubidium vapor into the system, and declines rapidly as the density is increased. More significantly, we show how a heating element designed to raise the TOF temperature can be used to reduce this transmission loss and dramatically extend the effective TOF transmission lifetime.

© 2013 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(300.6210) Spectroscopy : Spectroscopy, atomic
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 25, 2013
Manuscript Accepted: March 12, 2013
Published: April 15, 2013

Citation
Meimei Lai, James D. Franson, and Todd B. Pittman, "Transmission degradation and preservation for tapered optical fibers in rubidium vapor," Appl. Opt. 52, 2595-2601 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef]
  2. G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989). [CrossRef]
  3. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008). [CrossRef]
  4. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010). [CrossRef]
  5. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shariar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19, 22874–22881 (2011). [CrossRef]
  6. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006). [CrossRef]
  7. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009). [CrossRef]
  8. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009). [CrossRef]
  9. K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011). [CrossRef]
  10. V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011). [CrossRef]
  11. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007). [CrossRef]
  12. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010). [CrossRef]
  13. S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).
  14. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” Nat. Commun.4, 1548 (2013).
  15. A. D. Slepkov, A. R. Bhagwat, V. Venkataraan, P. Londero, and A. L. Gaeta, “Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers,” Opt. Express 16, 18976 (2008). [CrossRef]
  16. S. M. Hendrickson, T. B. Pittman, and J. D. Franson, “Nonlinear transmission through a tapered fiber in rubidium vapor,” J. Opt. Soc. Am. B 26, 267–271 (2009). [CrossRef]
  17. M. Fujiwara, K. Toubara, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011). [CrossRef]
  18. T. A. Birk and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  19. E. R. L. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Opt. 37, 1762–1763 (1998). [CrossRef]
  20. D. A. Steck, “Alkali D Line Data,” http://steck.us/alkalidata (2012).
  21. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavlength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef]
  22. M. C. Frawley, A. Petru-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012). [CrossRef]
  23. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B. 41, 155004 (2008). [CrossRef]
  24. M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009). [CrossRef]
  25. J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited