OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2610–2618

Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators

Stephan Reichelt  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2610-2618 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Methods for measuring and compensating the nonlinear electro-optical effect of transmissive, parallel-aligned liquid crystal (LC)-based spatial light modulators (SLMs) are presented. Particularly, the analysis is focused on the spatial nonuniformity of the voltage versus phase modulation characteristics for an active-matrix-driven, electrically controlled birefringence type LC-SLM. A high-quality reconstruction from phase-only modulating SLMs requires a well-calibrated phase addressing across the entire SLM panel. I discuss how the commonly inherent phase-response inhomogeneity of LC-SLM is characterized by purposeful localized measurement techniques. This phase-response inhomogeneity is efficiently compensated by utilizing a Legendre polynomial representation in combination with a remapping of an 8 bit gray level addressing. The calibration procedure is corroborated by measurement data. The LC-SLM’s experimental demonstration finally verifies the resultant improvement in holographic imaging.

© 2013 Optical Society of America

OCIS Codes
(090.2870) Holography : Holographic display
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(220.1000) Optical design and fabrication : Aberration compensation
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: January 23, 2013
Revised Manuscript: March 11, 2013
Manuscript Accepted: March 12, 2013
Published: April 15, 2013

Stephan Reichelt, "Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators," Appl. Opt. 52, 2610-2618 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45, 960–967 (2006). [CrossRef]
  2. D. Engström, G. Milewski, J. Bengtsson, and S. Galt, “Diffraction-based determination of the phase modulation for general spatial light modulators,” Appl. Opt. 45, 7195–7204 (2006). [CrossRef]
  3. A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584, 65840E (2007). [CrossRef]
  4. A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34, 5133–5139 (1995). [CrossRef]
  5. K. Dev, V. R. Singh, and A. Asundi, “Full-field phase modulation characterization of liquid-crystal spatial light modulator using digital holography,” Appl. Opt. 50, 1593–1600 (2011). [CrossRef]
  6. J. W. Tay, M. A. Taylor, and W. P. Bowen, “Sagnac-interferometer-based characterization of spatial light modulators,” Appl. Opt. 48, 2236–2242 (2009). [CrossRef]
  7. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Dynamic calibration for improving the speed of a parallel-aligned liquid-crystal-on-silicon display,” Appl. Opt. 48, 4616–4624 (2009). [CrossRef]
  8. Z. Zhang, H. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. A. Crossland, and D. Chu, “Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation,” Appl. Opt. 51, 3837–3846 (2012). [CrossRef]
  9. A. Lizana, I. Moreno, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 722 (2008).
  10. J. B. Bentley, J. A. Davis, J. Albero, and I. Moreno, “Self-interferometric technique for visualization of phase patterns encoded onto a liquid-crystal display,” Appl. Opt. 45, 7791–7794 (2006). [CrossRef]
  11. F. P. Ferreira and M. S. Belsley, “Direct calibration of a spatial light modulator by lateral shearing interferometry,” Opt. Express 18, 7899–7904 (2010). [CrossRef]
  12. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400–6406 (2004). [CrossRef]
  13. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667–5679 (2007). [CrossRef]
  14. M. Rose, “Active matrix liquid crystal displays (AMLCDs),” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 1589–1606.
  15. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, 2nd ed. (Wiley, 2010).
  16. MathWorks, “2D cross-correlation,” http://www.mathworks.de/de/help/signal/ref/xcorr2.html .
  17. K. Blankenbach, “Active matrix driving,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 441–458.
  18. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  19. S. Reichelt, R. Häussler, N. Leister, G. Fütterer, and A. Schwerdtner, “Large holographic 3D displays for tomorrow’s TV and monitors—solutions, challenges, and prospects,” in Proceedings of 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS 2008 (IEEE, 2008), pp. 194–195.
  20. S. Reichelt and N. Leister, “Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging,” J. Phys. 415, 012038 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited