OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2619–2625

Multiple-image encryption scheme based on cascaded fractional Fourier transform

Dezhao Kong, Xueju Shen, Qinzu Xu, Wang Xin, and Haiqiong Guo  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2619-2625 (2013)
http://dx.doi.org/10.1364/AO.52.002619


View Full Text Article

Enhanced HTML    Acrobat PDF (1357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multiple-image encryption scheme based on cascaded fractional Fourier transform is proposed. In the scheme, images are successively coded into the amplitude and phase of the input by cascading stages, which ends up with an encrypted image and a series of keys. The scheme takes full advantage of multikeys and the cascaded relationships of all stages, and it not only realizes image encryption but also achieves higher safety and more diverse applications. So multiuser authentication and hierarchical encryption are achieved. Numerical simulation verifies the feasibility of the method and demonstrates the security of the scheme and decryption characteristics. Finally, flexibility and variability of the scheme in application are discussed, and the simple photoelectric mixed devices to realize the scheme are proposed.

© 2013 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: December 3, 2012
Revised Manuscript: January 29, 2013
Manuscript Accepted: March 18, 2013
Published: April 15, 2013

Citation
Dezhao Kong, Xueju Shen, Qinzu Xu, Wang Xin, and Haiqiong Guo, "Multiple-image encryption scheme based on cascaded fractional Fourier transform," Appl. Opt. 52, 2619-2625 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2619


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000). [CrossRef]
  2. S. T. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multi-stage and multi- channel fractional Fourier domain filtering,” Opt. Lett. 26, 1242–1244 (2001). [CrossRef]
  3. Z. J. Liu, H. E. Zhao, and S. T. Liu, “Discrete fractional random transform,” Opt. Commun. 255, 357–365 (2005). [CrossRef]
  4. Z. J. Liu, Q. Guo, and S. T. Liu, “The discrete fractional random cosine and sine transforms,” Opt. Commun. 265, 100–105 (2006). [CrossRef]
  5. W. M. Jin and C. J. Yan, “Optical image encryption based on multi-channel fractional Fourier transform and double random phase encoding technique,” Optik 118, 38–41(2007). [CrossRef]
  6. C. Lin, X. J. Shen, R. Tang, and X. Zou, “Multiple images encryption based on Fourier transform hologram,” Opt. Commun. 285, 1023–1028 (2012). [CrossRef]
  7. C. Lin and X. J. Shen, “Analysis and design of impulse attack free generalized joint transform correlator optical encryption scheme,” Opt. Laser Technol. 44, 2032–2036 (2012). [CrossRef]
  8. X. C. Cheng and L. Z. Cai, “Security enhancement of double-random phase encryption by amplitude modulation,” Opt. Lett. 33, 1575–1577 (2008). [CrossRef]
  9. R. Tao, J. Lang, and Y. Wang, “Optical image encryption based on the multiple- parameter fractional Fourier transform,” Opt. Lett. 33, 581–583 (2008). [CrossRef]
  10. R. Tao, J. Lang, and Y. Wang, “The multiple-parameter fractional Hadamard transform,” Opt. Commun. 282, 1531–1535 (2009). [CrossRef]
  11. D. M. Zhao, X. X. Li, and L. E. Chen, “Optical image encryption with redefined fractional Hartley transform,” Opt. Commun. 281, 5326–5329 (2008). [CrossRef]
  12. L. F. Chen and D. M. Zhao, “Color image encoding in dual fractional Fourier-wavelet domain with random phases,” Opt. Commun. 282, 3433–3438 (2009). [CrossRef]
  13. G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30, 1306–1307(2005). [CrossRef]
  14. D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Wavelength multiplexing encryption using joint transform correlator architecture,” Appl. Opt. 48, 2099–2104(2009). [CrossRef]
  15. H. T. Chang, H.-E. Hwang, C. L. Lee, and M.-T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50, 710–716 (2011). [CrossRef]
  16. L. F. Chen and D. M. Zhao, “Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms,” Opt. Express 14, 8552–8560 (2006). [CrossRef]
  17. G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” Appl. Opt. 8, 391–397 (2006). [CrossRef]
  18. H. T. Chang, H.-E. Hwang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284, 4146–4151 (2011). [CrossRef]
  19. Z. J. Liu, Y. Zhang, H. F. Zhao, M. A. Ahmad, and S. T. Liu, “Optical multi-image encryption based on frequency shift,” Optik 122, 1010–1013 (2011). [CrossRef]
  20. B. M. Hennelly, T. J. Naughton, and J. Mcdonald, “Spread-space spread-spectrum technique for secure multiplexing,” Opt. Lett. 32, 1060–1062 (2007). [CrossRef]
  21. M. Z. He, L. Z. Cai, Q. Liu, X. C. Wang, and X. F. Meng, “Multiple image encryption an water marking by random phase matching,” Opt. Commun. 247, 29–37 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited