OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2670–2675

Intrinsic fiber-optic Fabry–Perot interferometer based on arc discharge and single-mode fiber

Di Wu, Tao Zhu, Guo-Yin Wang, Jian-Yu Fu, Xiao-Guang Lin, and Guang-Lei Gou  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2670-2675 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a simple intrinsic Fabry–Perot interferometer (FPI) based on single-mode fiber, where a thin film is formed by arc discharge to serve as one mirror of the FPI cavity. The temperature and refractive-index (RI) characteristics of the proposed device are investigated. Experimental results show that the device can provide temperature-independent measurement of RI with a fringe-contrast sensitivity of 72.59dB/RIU (RI units). Meanwhile, it can also be used as a temperature sensor with a wavelength sensitivity of 8pm/°C. Therefore, the potential simultaneous measurement of RI and temperature could be realized by detecting the variations of fringe contrast and wavelength, respectively.

© 2013 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Diffraction and Gratings

Original Manuscript: January 9, 2013
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 16, 2013
Published: April 15, 2013

Di Wu, Tao Zhu, Guo-Yin Wang, Jian-Yu Fu, Xiao-Guang Lin, and Guang-Lei Gou, "Intrinsic fiber-optic Fabry–Perot interferometer based on arc discharge and single-mode fiber," Appl. Opt. 52, 2670-2675 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Pérot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C,” Smart Mater. Struc. 1, 237–242 (1992). [CrossRef]
  2. D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003). [CrossRef]
  3. T. W. Kao and H. F. Taylor, “High-sensitivity intrinsic fiber-optic Fabry-Perot pressure sensor,” Opt. Lett. 21, 615–617 (1996). [CrossRef]
  4. S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997). [CrossRef]
  5. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764–5769 (2008). [CrossRef]
  6. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007). [CrossRef]
  7. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A Phys. 138, 248–260 (2007). [CrossRef]
  8. J.-L. Kou, J. Feng, Q.-J. Wang, F. Xu, and Y.-Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35, 2308–2310 (2010). [CrossRef]
  9. W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor,” J. Lightwave Technol. 19, 682–686 (2001). [CrossRef]
  10. Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry–Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17, 2403–2405 (2005). [CrossRef]
  11. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18, 141–149 (2010). [CrossRef]
  12. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer,” Opt. Lett. 33, 2455–2457 (2008). [CrossRef]
  13. O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009). [CrossRef]
  14. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry–Perot interferometer,” Opt. Lett. 34, 2441–2443 (2009). [CrossRef]
  15. D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29, 912–915 (2012). [CrossRef]
  16. S. Silva, L. Coelho, R. M. André, and O. Frazão, “Gas refractometry based on an all-fiber spatial optical filter,” Opt. Lett. 37, 3450–3452 (2012). [CrossRef]
  17. D.-L. Kim, M. Tomozawa, S. Dubois, and G. Orcel, “Fictive temperature measurement of single-mode optical-fiber core and cladding,” J. Lightwave Technol. 19, 1155–1158 (2001). [CrossRef]
  18. K. Morishita and Y. Miyake, “Fabrication and resonance wavelength of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–630 (2004). [CrossRef]
  19. K. Morishita and A. Kaino, “Adjusting resonance wavelength of long-period fiber gratings by the glass-structure change,” Appl. Opt. 44, 5018–5023 (2005). [CrossRef]
  20. Y. Q. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009). [CrossRef]
  21. H. Kakiuchida, “Refractive index and density in F- and Cl-doped silica glasses,” Appl. Phys. Lett. 86, 161907 (2005). [CrossRef]
  22. K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990). [CrossRef]
  23. Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148, 33–38 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited