OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2682–2687

Single tunable laser interrogation of slab-coupled optical sensors through resonance tuning

Spencer Chadderdon, Leeland Woodard, Daniel Perry, Richard H. Selfridge, and Stephen M. Schultz  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2682-2687 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a method for tuning the resonant wavelengths of slab-coupled optical fiber sensors (SCOSs). This method allows multiple sensors to be interrogated simultaneously with a single tunable laser. The resonances are tuned by rotating a biaxial slab waveguide relative to an optical D-fiber. As the slab waveguide rotates, its effective index of refraction changes causing the coupling wavelengths of the slab waveguide and D-fiber to shift. A SCOS fabricated with potassium titanyl phosphate crystal as the slab waveguide is shown to have resonance tuning ranges of 6.67 and 22.24 nm, respectively, for TM and TE polarized modes.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.2100) Materials : Electro-optical materials
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 31, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 18, 2013
Published: April 16, 2013

Spencer Chadderdon, Leeland Woodard, Daniel Perry, Richard H. Selfridge, and Stephen M. Schultz, "Single tunable laser interrogation of slab-coupled optical sensors through resonance tuning," Appl. Opt. 52, 2682-2687 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978). [CrossRef]
  2. C. R. Miller, “Electromagnetic Pulse Threats in 2010,” Report 11, (Center for Strategy and Technology, Air War College, Air University, Maxwell Air Force Base, Alabama, 2005).
  3. A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.
  4. Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008). [CrossRef]
  5. R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139–2144 (2007). [CrossRef]
  6. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240 (2008). [CrossRef]
  7. W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004). [CrossRef]
  8. W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006). [CrossRef]
  9. R. Gibson, R. Selfridge, and S. Schultz, “Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides,” Appl. Opt. 48, 3695–3701 (2009). [CrossRef]
  10. S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012). [CrossRef]
  11. D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 764876480D (2010). [CrossRef]
  12. C. A. Millar, M. C. Brierley, and R. S. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using high-index overlay waveguide,” Opt. Lett. 12, 284–286 (1987). [CrossRef]
  13. B. Saleh, and M. Teich, Fundamentals of Photonics (Wiley, 2007).
  14. J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986). [CrossRef]
  15. S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited