OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2718–2728

Suitability of goniospectrophotometric space curves as appearance fingerprints

Marta Klanjšek Gunde and Nina Rogelj  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2718-2728 (2013)
http://dx.doi.org/10.1364/AO.52.002718


View Full Text Article

Enhanced HTML    Acrobat PDF (1427 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Goniospectrophotometric space curves were obtained by summation of spatially under-sampled bidirectional reflectance distribution function over all directions and repeating this for all wavelengths in the visible spectral region. This gives a 3D goniospectrophotometric curve called an xDNA graph. Systematic analysis applying 19 measurement geometries confirms existence of characteristic shapes of the graph for all optically similar samples. This enables distinguishing between differently rough samples, an interference effect on various transparent layers, and selective spectral absorption of light in differently thick pigmented coatings. Therefore, the considered goniospectrophotometric space curves could serve as an appearance fingerprint of such samples.

© 2013 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(330.1880) Vision, color, and visual optics : Detection
(150.1708) Machine vision : Color inspection

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 25, 2013
Revised Manuscript: February 26, 2013
Manuscript Accepted: March 20, 2013
Published: April 16, 2013

Citation
Marta Klanjšek Gunde and Nina Rogelj, "Suitability of goniospectrophotometric space curves as appearance fingerprints," Appl. Opt. 52, 2718-2728 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2718


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Pfaff and P. Reynders, “Angle-dependent optical effects deriving from submicron structures of films and pigments,” Chem. Rev. 99, 1963–1982 (1999). [CrossRef]
  2. F. J. Maile, G. Pfaff, and P. Reynders, “Effect pigments-past, present and future,” Prog. Org. Coat. 54, 150–163 (2005). [CrossRef]
  3. E. Kirchner, G. J. van den Kieboom, L. Njo, R. Supèr, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007). [CrossRef]
  4. N. Dekker, E. J. J. Kirchner, R. Supèr, G. J. van den Kieboom, and R. Gottenbos, “Total appearance differences for metallic and pearlescent materials: contributions from color and texture,” Color Res. Appl. 36, 4–14 (2011). [CrossRef]
  5. G. Obein, R. Bousquet, and M. E. Nadal, “New NIST reference goniospectrometer,” Proc. SPIE 5880, T-1–T-10 (2005). [CrossRef]
  6. J. Suomalainen, T. Hakala, J. Peltoniemi, and E. Puttonen, “Polarised multiangular reflectance measurements using the Finnish geodetic institute field goniospectrometer,” Sensors 9, 3891–3907 (2009). [CrossRef]
  7. L. Simonot and G. Obein, “Geometrical considerations in analyzing isotropic or anisotropic surface reflections,” Appl. Opt. 46, 2615–2623 (2007). [CrossRef]
  8. V. B. Podobedov, M. E. Nadal, and C. C. Miller, “Improving the performance of NIST five axis goniospectrometer for measurements of bidirectional reflectance distribution function,” Proc. SPIE 8065, 80651l (2011). [CrossRef]
  9. A. M. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, A. M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- and out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012). [CrossRef]
  10. G. Obein, T. Leroux, and F. Viénot, “Bi-directional reflectance distribution factor and gloss scales,” Proc. SPIE 4299, 279–290 (2001). [CrossRef]
  11. L. Simonot, M. Hébert, and D. Dupraz, “Goniocolorimetry: from measurement to representation in the CIELAB color space,” Color Res. Appl. 36, 169–178 (2011). [CrossRef]
  12. A. Höpe and K.-O. Hauer, “Three-dimensional appearance characterization of diffuse standard reflection materials,” Metrologia 47, 295–304 (2010). [CrossRef]
  13. A. Ferrero, A. M. Rabal, J. Campos, A. Pons, and M. L. Hernanz, “Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards,” Appl. Opt. 51, 8535–8540 (2012). [CrossRef]
  14. A. Takagi, A. Watanabe, and G. Baba, “Prediction of spectral reflectance factor distribution of color-shift paint finishes,” Color Res. Appl. 32, 378–387 (2007). [CrossRef]
  15. H. J. A. Saris, R. J. B. Gottenbos, and H. van Houwellingen, “Correlation between visual and instrumental colour differences of metallic paint films,” Color Res. Appl. 15, 200–205 (1990). [CrossRef]
  16. “Standard practice for specifying the geometry of multiangle spectrophotometers,” Tech. Rep. ASTM E2194.01 (American Society for Testing and Materials, 2001).
  17. “Tolerances for automotive paint—part 2: goniochromatic paints,” Tech. Rep. DIN-6175–2 (Deutsches Institut für Normung, 1999).
  18. A. Takagi, A. Watanabe, and G. Baba, “Prediction of spectral reflectance factor distribution of automotive paint finishes,” Color Res. Appl. 30, 275–282 (2005). [CrossRef]
  19. E. Perales, E. Chorro, W. R. Cramer, and F. M. Martínez-Verdú, “Analysis of the colorimetric properties of goniochromatic colors using the MacAdam limits under different light sources,” Appl. Opt. 50, 5271–5278 (2011). [CrossRef]
  20. W. R. Cramer, “Examples of interference and color pigment mixtures green with red and red with green,” Color Res. Appl. 27, 276–281 (2002). [CrossRef]
  21. E. Kirchner and W. Cramer, “Making sense of measurement geometries for multi-angle spectrophotometers,” Color Res. Appl. 37, 186–198 (2012). [CrossRef]
  22. A. Ferrero, A. M. Rabal, J. Campos, A. Pons, and M. L. Hernanz, “Variables separation of the BRDF for better understanding color variation in special effect pigment coatings,” J. Opt. Soc. Am. A 29, 842–847 (2012). [CrossRef]
  23. J. K. Nisper, P. S. Rood, B. A. Pawlanta, T. M. Richardson, and B. D. Teunis, “Measuring an appearance property of a surface using a bidirectional reflectance distribution function,” U.S. patent 0291993 A1 (20December2007).
  24. J. K. Nisper, T. M. Richardson, M. S. Ellens, and C. Huang, “Method and system for enhanced formulation and visualization rendering,” U.S. patent 0213120 A1 (27August2009).
  25. J. Nisper, T. Richardson, and B. Teunis, “Major advances in the reliable measurement of the color and appearance of special effect paints and coatings,” presented at the American Coatings Conference, Charlotte, North Carolina, 1 April (2008).
  26. “X-Rite MA98 Portable Multi-Angle Spectrophotometers,” accessed 23 January 2013, http://www.xrite.com/documents/literature/en/L10-372_MA98_en.pdf .
  27. M. Klanjšek Gunde, “Complete optical analysis to obtain the absorption coefficient of the interstitial oxygen vibration in silicon,” Appl. Spectrosc. 50, 1156–1160 (1996). [CrossRef]
  28. Q. Z. Zhu and Z. M. Zhang, “Anisotropic slope distribution and bidirectional reflectance of a rough silicon surface,” J. Heat Transfer 126, 985–993 (2004). [CrossRef]
  29. M. Klanjšek Gunde, “Optical effects in IR spectroscopy: thickness-dependent positions of absorbance lines in spectra of thin films,” Appl. Spectrosc. 46, 365–372 (1992). [CrossRef]
  30. M. Klanjšek Gunde and M. Maček, “Infrared optical constants and dielectric response functions in silicon nitride and oxynitride films,” Phys. Stat. Sol. A 183, 439–449 (2001). [CrossRef]
  31. M. Klanjšek Gunde, M. Žveglič, N. Hauptman, and G. Golob, “Measurement possibilities of interference layers on a paper,” Adv. Print. Media Technol. 35, 429–436 (2008).
  32. R. Kulčar, M. Friškovec, N. Hauptman, A. Vesel, and M. Klanjšek Gunde, “Colorimetric properties of reversible thermochromic printing inks,” Dyes Pigm. 86, 271–277 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited