OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2729–2734

Characteristics of two-wave mixing adaptive interferometer with CdTe:Ge at 1.06 and 1.55 μm and improved temporal adaptability with temperature control

Konstantin Shcherbin, Volodymyr Danylyuk, and Marvin Klein  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2729-2734 (2013)
http://dx.doi.org/10.1364/AO.52.002729


View Full Text Article

Enhanced HTML    Acrobat PDF (304 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have characterized a two-wave mixing adaptive interferometer based on dc-biased photorefractive CdTe:Ge crystal at 1.06 and 1.55 μm. Excellent performance is shown at both wavelengths by demonstration of high sensitivity for measurement of small displacements and high cutoff frequency at low intensity. We have achieved a considerable reduction of the undesired low-frequency response using controlled heating of the crystal, which ensures depopulation of corresponding traps. The experimental data are used for measurement of the real and imaginary parts of the coupling constant, as well as the dielectric relaxation time of the crystal and the mobility-lifetime product of the free charge carriers.

© 2013 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing

ToC Category:
Materials

History
Original Manuscript: January 15, 2013
Manuscript Accepted: March 21, 2013
Published: April 16, 2013

Citation
Konstantin Shcherbin, Volodymyr Danylyuk, and Marvin Klein, "Characteristics of two-wave mixing adaptive interferometer with CdTe:Ge at 1.06 and 1.55 μm and improved temporal adaptability with temperature control," Appl. Opt. 52, 2729-2734 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997). [CrossRef]
  2. L. A. de Montmorillon, P. Delhaye, and G. Roosen, “Photorefractive interferometer for ultrasound detection,” in Progress in Photorefractive Nonlinear Optics, K. Kuroda, ed. (Taylor & Francis, 2002), pp. 213–282.
  3. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  4. A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990). [CrossRef]
  5. K. Shcherbin, “High photorefractive gain at counterpropagating geometry in CdTe:Ge at 1.064 μm and 1.55 μm,” Appl. Opt. 48, 371–374 (2009). [CrossRef]
  6. L. A. de Montmorillon, Ph. Delaye, J. C. Launey, and G. Roosen, “Novel theoretical aspects on ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5922 (1997). [CrossRef]
  7. J. Frejlich, Photorefractive Materials (Wiley-Interscience, 2006).
  8. K. Shcherbin, S. Odoulov, F. Ramaz, B. Farid, B. Briat, H. J. von Bardeleben, P. Delaye, and G. Roosen, “Charge transfer in photorefractive CdTe:Ge at different wavelengths,” Opt. Mater. 18, 151–154 (2001). [CrossRef]
  9. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).
  10. D. T. F. Marple, “Refractive index of ZnSe, ZnTe and CdTe,” J. Appl. Phys. 35, 539–542 (1964). [CrossRef]
  11. K. Tada and M. Aoki, “Linear electro-optic properties of ZnTe at 10.6 microns,” Jpn. J. Appl. Phys. 10, 998–1001 (1971).
  12. K. Paivasaari, A. A. Kamshilin, P. Delaye, and G. Roosen, “Reduction of the space-charge field in photorefractive crystals,” Opt. Commun. 213, 357–366 (2002). [CrossRef]
  13. T. O. dos Santos, J. Frejlich, and K. Shcherbin, “Photo electromotive force in CdTe:Ge: manifestation of two photorefractive centers,” Appl. Phys. B 99, 701–707 (2010). [CrossRef]
  14. A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009). [CrossRef]
  15. K. Shcherbin and M. B. Klein, “Adaptive interferometers with no external field using reflection gratings in CdTe:Ge at 1550 nm,” Opt. Commun. 282, 2580–2585 (2009). [CrossRef]
  16. M. B. Klein and K. Shcherbin, “Optical homodyne interferometer,” U.S. patent 8,149,421 (3April2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited