OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2780–2791

Phase properties of high-reflectance two-material periodic mirrors: application to oblique-incidence tunable filters

Frédéric Lemarquis  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2780-2791 (2013)
http://dx.doi.org/10.1364/AO.52.002780


View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mathematical expressions are developed for the phase-shift derivative with respect to the wavelength, in the case of nonquarter-wave, two-material, high-reflectance, periodic mirrors. These expressions are applied to the case of oblique incidence, and a condition relating the layer indices, which provides identical phase dispersion curves for both the P and S polarizations, is derived. The use of such mirrors in Fabry–Perot filters results in a common peak wavelength for both polarizations when the filter is used at oblique incidence, instead of the two separate spectral peaks usually observed. This property, which is illustrated by several numerical examples, is of great interest for the design of tunable filters, in which the angle of incidence is frequently used as a tuning parameter.

© 2013 Optical Society of America

OCIS Codes
(230.4040) Optical devices : Mirrors
(310.0310) Thin films : Thin films
(310.1620) Thin films : Interference coatings
(350.2460) Other areas of optics : Filters, interference
(350.5030) Other areas of optics : Phase
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Thin Films

History
Original Manuscript: February 15, 2013
Revised Manuscript: March 21, 2013
Manuscript Accepted: March 22, 2013
Published: April 17, 2013

Citation
Frédéric Lemarquis, "Phase properties of high-reflectance two-material periodic mirrors: application to oblique-incidence tunable filters," Appl. Opt. 52, 2780-2791 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kraft, B. Carnicero Dominguez, M. Drusch, J. L. Bézy, and R. Meynart, “FIMAS—feasibility study of a fluorescence imaging spectrometer to be flown on a small platform in tandem with sentinel 3,” presented at International Conference on Space Optics ICSO 2010, Rhodes, Greece, 4–8 October 2010.
  2. P. Gu and Z. Zheng, “Design of non-polarizing thin film edge filters,” J. Zhejiang Univ. Sci. A 7, 1037–1040 (2006). [CrossRef]
  3. “Semrock VersaChrome tunable bandpass filters,” http://www.semrock.com/semrock-versachrome-tunable-bandpass- filters. aspx .
  4. A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983–2985 (1976). [CrossRef]
  5. P. Baumeister, “Bandpass design—application to nonnormal incidence,” Appl. Opt. 31, 504–512 (1992). [CrossRef]
  6. D. Cushing, “Thin film interference filter for 45° angle of incidence inside a glass prsim with extremely low polarization dependence,” in 43rd Annual Technical Conference Proceedings (SVC, 2000), pp. 252–257.
  7. H. Qi, R. Hong, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing and polarizing filter design,” Appl. Opt. 44, 2343–2348 (2005). [CrossRef]
  8. D. Cushing, “Multilayer thin film dielectric bandpass filter,” U.S. patent 5,926,317 (20July1999).
  9. D. Cushing, “Bandpass filter for forty five degree angle with low polarization properties,” in Optical Interference Coatings, Vol. 9, OSA Technical Digest (Optical Society of America, 1998), pp. 226–228.
  10. P. Gu, H. Chen, Y. Zhang, H. Li, and X. Liu, “Wavelength-division multiplexed thin-film filters used in tilted incident angles of light,” Appl. Opt. 43, 2066–2070 (2004). [CrossRef]
  11. J. Birge and F. Kärtner, “Efficient analytic computation of dispersion from multilayer structures,” Appl. Opt. 45, 1478–1483 (2006). [CrossRef]
  12. J. Birge and F. Kärtner, “Efficient optimization of multilayer coatings for ultrafast optics using analytic gradients of dispersion,” Appl. Opt. 46, 2656–2662 (2007). [CrossRef]
  13. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007). [CrossRef]
  14. A. V. Tikhonravov, P. W. Baumeister, and K. V. Popov, “Phase properties of multilayers,” Appl. Opt. 36, 4382–4392 (1997). [CrossRef]
  15. F. Abeles, “Remarque sur l’influence de la dispersion dans les systèmes de couches minces diélectriques,” J. Physique et le Radium 19, 327–334 (1958).
  16. P. W. Baumeister, Optical Coating Technology (SPIE, 2004), pp. 2–75.
  17. E. Garmire, “Theory of quarter-wave-stack dielectric mirrors used in a thin Fabry–Perot filter,” Appl. Opt. 42, 5442–5449 (2003). [CrossRef]
  18. W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effect of reflection phase shift on the optical properties of a micro-opto-electo-mechanical system Fabry–Perot tunable filter,” J. Opt. A 6, 853–858 (2004). [CrossRef]
  19. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1988), p. 16.
  20. P. D. Atherton and N. K. Reay, “A narrow-gap, servo-controlled tunable Fabry–Perot filter for astronomy,” Mon. Not. R. Astron. Soc. 197, 507–511 (1981).
  21. A. Scott, M. Javed, R. Abraham, S. Eikenberry, E. Barton, M. Bershady, J. Bland-Hawthorn, D. Crampton, R. Doyon, J. Julian, R. Julian, J.-P. Kneib, D. Loop, N. Raines, N. Rowlands, and J. D. Smith, “Performance of F2T2 tandem tunable etalon,” Proc. SPIE 6269, 62695J (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited