OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2800–2807

Multireflection modal method for wideband fused-silica transmission gratings

Wenting Sun, Peng Lv, Changhe Zhou, Hongchao Cao, and Jun Wu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2800-2807 (2013)
http://dx.doi.org/10.1364/AO.52.002800


View Full Text Article

Enhanced HTML    Acrobat PDF (907 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multireflection modal method is proposed to give a clear physical picture for explanation of the diffraction process that takes place in a wideband fused-silica transmission grating. Using rigorous coupled-wave analysis, the optimized grating exhibits diffraction efficiency greater than 93.9% for TE polarization over a bandwidth of 126 nm (from 735 to 861 nm). The designed wideband fused-silica transmission grating is fabricated using holographic interference recording and inductively coupled plasma etching technology. Experimental results are in agreement with the theoretical values.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(220.4000) Optical design and fabrication : Microstructure fabrication
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 9, 2013
Revised Manuscript: March 21, 2013
Manuscript Accepted: March 25, 2013
Published: April 17, 2013

Citation
Wenting Sun, Peng Lv, Changhe Zhou, Hongchao Cao, and Jun Wu, "Multireflection modal method for wideband fused-silica transmission gratings," Appl. Opt. 52, 2800-2807 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]
  2. W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058–6063 (2008). [CrossRef]
  3. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995). [CrossRef]
  4. D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni, “Large area high efficiency broad bandwidth 800 nm dielectric gratings for high energy laser pulse compression,” Opt. Express 17, 23809–23816 (2009). [CrossRef]
  5. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299–1301 (2007). [CrossRef]
  6. B. Wang, C. Zhou, J. Feng, H. Ru, and J. Zheng, “Wideband two-port beam splitter of a binary fused-silica phase grating,” Appl. Opt. 47, 4004–4008 (2008). [CrossRef]
  7. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638–6643 (2008). [CrossRef]
  8. J. Feng, C. Zhou, J. Zheng, H. Cao, and P. Lv, “Dual-function beam splitter of a subwavelength fused-silica grating,” Appl. Opt. 48, 2697–2701 (2009). [CrossRef]
  9. J. Feng, C. Zhou, J. Zheng, H. Cao, and P. Lv, “Design and fabrication of a polarization-independent two-port beam splitter,” Appl. Opt. 48, 5636–5641 (2009). [CrossRef]
  10. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express 13, 10448–10456 (2005). [CrossRef]
  11. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819–826 (2007). [CrossRef]
  12. J. Zheng, C. Zhou, B. Wang, and J. Feng, “Beam splitter of low-contrast binary gratings under second Bragg angle incidence,” J. Opt. Soc. Am. A 25, 1075–1083 (2008). [CrossRef]
  13. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554–1556 (2008). [CrossRef]
  14. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008). [CrossRef]
  15. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar gratings: a coupled Bloch-mode insight,” J. Lightwave Technol. 24, 2442–2449 (2006). [CrossRef]
  16. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16987 (2010). [CrossRef]
  17. C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26, 014043 (2011). [CrossRef]
  18. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012). [CrossRef]
  19. J. J. Zheng, “Simplified modal method of gratings and applications,” Ph.D. dissertation (Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences, 2009).
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  21. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef]
  22. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Optica Acta 28, 413–428 (1981). [CrossRef]
  23. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005). [CrossRef]
  24. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429–4434(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited