OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2808–2814

Low-cost scheme for high-precision dual-wavelength laser metrology

Yitping Kok, Michael J. Ireland, J. Gordon Robertson, Peter G. Tuthill, Benjamin A. Warrington, and William J. Tango  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2808-2814 (2013)
http://dx.doi.org/10.1364/AO.52.002808


View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology, which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He–Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application in which this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers, although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing the cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical to that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the noncommon path between metrology and science channels.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 20, 2013
Revised Manuscript: March 26, 2013
Manuscript Accepted: March 28, 2013
Published: April 17, 2013

Citation
Yitping Kok, Michael J. Ireland, J. Gordon Robertson, Peter G. Tuthill, Benjamin A. Warrington, and William J. Tango, "Low-cost scheme for high-precision dual-wavelength laser metrology," Appl. Opt. 52, 2808-2814 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, and D. J. Hutter, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).
  2. J. T. Armstrong, D. Mozurkewich, L. J. Rickard, D. J. Hutter, J. A. Benson, P. F. Bowers, N. M. Elias, C. A. Hummel, K. J. Johnston, D. F. Buscher, J. H. Clark, L. Ha, L. Ling, N. M. White, and R. S. Simon, “The Navy prototype optical interferometer,” Astrophys. J. 496, 550–571 (1998). [CrossRef]
  3. M. Colavita, J. Wallace, B. Hines, Y. Gursel, F. Malbet, D. Palmer, X. Pan, M. Shao, J. Yu, A. F. Boden, P. J. Dumont, J. Gubler, C. D. Koresko, S. R. Kulkarni, B. F. Lane, D. W. Mobley, and G. T. van Belle, “The Palomar testbed interferometer,” Astrophys. J. 510, 505–521 (1999). [CrossRef]
  4. N. Schuhler, “Frequency-comb stabilized laser sources for absolute distance metrology at the very large telescope interferometer,” Ph.D. thesis (Universite Louis Pasteur, 2006).
  5. S. Gillessen, M. Lippa, F. Eisenhauer, O. Pfuhl, M. Haug, S. Kellner, T. Ott, E. Wieprecht, E. Sturm, F. Haußmann, C. F. Kister, D. Moch, and M. Thiel, “GRAVITY: metrology,” Proc. SPIE8445, 84451O (2012). [CrossRef]
  6. R. Daendliker, R. Thalmann, and D. Prongue, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988). [CrossRef]
  7. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31, 3101–3103 (2006). [CrossRef]
  8. J. Davis, W. J. Tango, A. J. Booth, T. A. ten Brummelaar, R. A. Minard, and S. M. Owens, “The Sydney University Stellar Interferometer—I. The instrument,” Mon. Not. R. Astron. Soc. 303, 773–782 (1999). [CrossRef]
  9. J. G. Robertson, M. J. Ireland, W. J. Tango, P. G. Tuthill, B. A. Warrington, Y. Kok, A. C. Rizzuto, A. Cheetham, and A. P. Jacob, “Science and technology progress at the Sydney University Stellar Interferometer,” Proc. SPIE8445, 84450N (2012). [CrossRef]
  10. R. L. Kurucz, “Linelists,” http://kurucz.harvard.edu/linelists.html (2012).
  11. B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966). [CrossRef]
  12. http://www.zaber.com .
  13. K. E. Erickson, “Investigation of the invariance of atmospheric dispersion with a long-path refractometer,” J. Opt. Soc. Am. 52, 777–780 (1962). [CrossRef]
  14. http://www.mathworks.com/products/matlab .
  15. http://www.gnu.org/software/octave .
  16. J. F. Walkup and J. W. Goodman, “Limitations of fringe-parameter estimation at low light levels,” J. Opt. Soc. Am. 63, 399–407 (1973). [CrossRef]
  17. Zaber, T-Series Positioning Products Technical Notes, 2006th ed. (Zaber Technologies Inc., 2006).
  18. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).
  19. http://www.thorlab.com .
  20. http://www.newport.com .
  21. http://www.npl.co.uk .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited