OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2815–2827

Numerical modeling of spatial coherence using the elementary function method

Arlene Smith and Christopher Dainty  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2815-2827 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The elementary function method is an approximate method for propagation calculations in spatially, partially coherent light in two dimensions. In this paper, we present the numerical application of this method to a 248 nm UV excimer laser source. We present experimental results of the measurement of the degree of spatial coherence and the beam profile of this source. The elementary function method is then applied to the real beam data and used to simulate the effects of imaging an opaque edge with a source of varying degrees of spatial coherence. The effect of spatial coherence on beam homogenization is also presented.

© 2013 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1640) Coherence and statistical optics : Coherence
(110.0110) Imaging systems : Imaging systems
(110.1650) Imaging systems : Coherence imaging
(110.4980) Imaging systems : Partial coherence in imaging
(110.5220) Imaging systems : Photolithography

ToC Category:
Coherence and Statistical Optics

Original Manuscript: December 5, 2012
Revised Manuscript: February 28, 2013
Manuscript Accepted: March 21, 2013
Published: April 17, 2013

Arlene Smith and Christopher Dainty, "Numerical modeling of spatial coherence using the elementary function method," Appl. Opt. 52, 2815-2827 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Burvall, A. Smith, and C. Dainty, “Elementary functions: propagation of partially coherent light,” J. Opt. Soc. Am. A 26, 1721–1729 (2009). [CrossRef]
  2. M. Wald, M. Burkhardt, A. Pesch, H. Gross, and J. Greif, “Design of a microscopy illumination using a partial coherent light source,” Proc. SPIE 5962, 420–429 (2005). [CrossRef]
  3. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  5. E. Wolf, Introduction to the Theory of Coherence and Polarisation of Light (Cambridge University, 2007).
  6. H. H. Hopkins, “The concept of partial coherence in optics,” Proc. R. Soc. Lond. A 208, 263–277 (1951). [CrossRef]
  7. F. Gori, “Directionality and spatial coherence,” Optica Acta 27, 1025–1034 (1980). [CrossRef]
  8. E. Wolf, “New spectral representation of random sources and of the partially coherent fields that they generate,” Opt. Commun. 38, 3–6 (1981). [CrossRef]
  9. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  10. A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  11. M. Unser, “Sampling—50 years after Shannon,” Proc. IEEE 88, 569–587 (2000). [CrossRef]
  12. B. E. A. Saleh and M. Rabbani, “Simulation of partially coherent imagery in the space and frequency domains and by modal expansion,” Appl. Opt. 21, 2770–2777 (1982). [CrossRef]
  13. R. Castañeda and F. F. Medina, “Partially coherent imaging with Schell-model beams,” Opt. Laser Technol. 29, 165–170 (1997). [CrossRef]
  14. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78–84 (2003). [CrossRef]
  15. Y. Cai and Q. Lin, “Partially coherent flat-topped multi-Gaussian-Schell-model beam and its propagation,” Opt. Commun. 239, 33–41 (2004). [CrossRef]
  16. J. Turunen and P. Vahimaa, “Independent-elementary-field model for three-dimensional spatially partially coherent sources,” Opt. Express 16, 6433–6442 (2008). [CrossRef]
  17. F. Zernike, “The concept of degree of coherence and its applications to optical problems,” Physica 5, 785–795 (1938). [CrossRef]
  18. E. Tervonen, J. Turunen, and A. T. Friberg, “Transverse laser-mode structure determination from spatial coherence measurements: experimental results,” Appl. Phys. B 49, 409–414 (1989). [CrossRef]
  19. K. A. Nugent and J. E. Trebes, “Coherence measurement technique for short-wavelength light sources,” Rev. Sci. Instrum. 63, 2146–2151 (1992). [CrossRef]
  20. R. Castañeda and Z. Jaroszewicz, “Determination of the spatial coherence of Schell-model beams with diffraction gratings,” Opt. Commun. 173, 115–121 (2000). [CrossRef]
  21. J. Garcia-Sucerquia, and R. Castañeda, “Full retrieving of the complex degree of spatial coherence: theoretical analysis,” Opt. Commun. 228, 9–19 (2003). [CrossRef]
  22. Y. Mejía, and A. I. González, “Measuring spatial coherence by using a mask with multiple apertures,” Opt. Commun. 273, 428–434 (2007). [CrossRef]
  23. E. Wolf, “A macroscopic theory of interference and diffraction of light from finite sources,” Proc. R. Soc. Lond. A 225, 96–111 (1954). [CrossRef]
  24. M. J. E. Golay, “Point arrays having compact, nonredundant autocorrelations,” J. Opt. Soc. Am. 61, 272–273 (1971). [CrossRef]
  25. H. H. Hopkins, “Applications of coherence theory in microscopy and interferometry,” J. Opt. Soc. Am. 47, 508–526 (1957). [CrossRef]
  26. J. Turunen, P. Paakkonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).
  27. E. T. Kana, S. Bollanti, P. D. Lazzaro, and D. Murra, “Beam homogenization: theory, modelling and application to an excimer laser beam,” Proc. SPIE 5777, 716–724 (2005). [CrossRef]
  28. E. T. Kana, S. Bollanti, P. D. Lazzaro, D. Murra, O. Bouba, and M. B. Onana, “Laser beam homogenization: modelling and comparison with experimental results,” Opt. Commun. 264, 187–192 (2006). [CrossRef]
  29. K. Mann, A. Hopfmüller, P. Gorzellik, R. Schild, W. Stöffler, H. Wagner, and G. Wolbold, “Monitoring and shaping of excimer laser beam profiles,” Proc. SPIE 1834, 184–194 (1992). [CrossRef]
  30. A. Büttner, and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41, 2393–2401 (2002). [CrossRef]
  31. Y. Lin, G. N. Lawrence, and J. Buck, “Characterization of excimer lasers for application to lenslet array homogenizers,” Appl. Opt. 40, 1931–1940 (2001). [CrossRef]
  32. M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer—from theory to application,” Proc. SPIE 6663, 6663021 (2007). [CrossRef]
  33. E. Hecht, Optics (Addison Wesley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited