OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2828–2833

Enhanced four-wave mixing in quantum cascade semiconductor optical amplifier

Baktash Hekmat, Vahid Ahmadi, and Elham Darabi  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2828-2833 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed a quantum cascade semiconductor optical amplifier (QCSOA) structure for enhanced four-wave mixing (FWM) of short optical pulses in midinfrared. To analyze FWM characteristics in a QCSOA, the evolution in the time and spectral domains of two input optical pulses with different frequencies during propagation is calculated using the finite-difference beam propagation method. Calculated third-order susceptibility responsible for FWM resonance nonlinearity of the modified structure is enhanced by two orders of magnitude. Simulation results reveal that quantum cascade structure parameters and injected pump and probe powers are extremely important in determining the amplified FWM optical pulse characteristics in both the time and frequency domains.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(250.4480) Optoelectronics : Optical amplifiers

ToC Category:

Original Manuscript: December 6, 2012
Revised Manuscript: February 27, 2013
Manuscript Accepted: March 15, 2013
Published: April 17, 2013

Baktash Hekmat, Vahid Ahmadi, and Elham Darabi, "Enhanced four-wave mixing in quantum cascade semiconductor optical amplifier," Appl. Opt. 52, 2828-2833 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Gurnick and T. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. 19, 791–794 (1983). [CrossRef]
  2. F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron. 30, 1313–1326 (1994). [CrossRef]
  3. E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271, 168–173 (1996). [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic, 2007).
  5. S. Banerjee and K. A. Shore, “MIR and NIR nonlinear optical processing using intersubband χ(3) in triple quantum well structures,” Semicond. Sci. Technol. 18, 655–660 (2003). [CrossRef]
  6. S. Liu, E. Lalanne, P. Q. Liu, X. Wang, C. F. Gmachl, and A. M. Johnson, “Femtosecond carrier dynamics and nonlinear effects in quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 92–104 (2012). [CrossRef]
  7. D. Walrod, S. Y. Auyang, P. A. Wolff, and M. Sugimoto, “Observation of third order nonlinearity due to intersubband transitions in AlGaAs/GaAs superlattices,” Appl. Phys. Lett. 59, 2932–2934 (1991). [CrossRef]
  8. D. Indjin, Z. Ikonic, V. Milanovic, and J. Radovanovic, “Optimization of resonant second and third order nonlinearities in step and continuously graded semiconductor quantum wells,” IEEE J. Quantum Electron. 34, 795–802 (1998). [CrossRef]
  9. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared λ∼7.4  μm. quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002). [CrossRef]
  10. C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” Appl. Phys. Lett. 102, 61101 (2007). [CrossRef]
  11. S. Tomic, V. Milanovic, and Z. Ikonic, “Optimization of intersubband resonant second-order susceptibility in asymmetric graded AlxGa1−xAs quantum wells using supersymmetric quantum mechanics,” Phys. Rev. B 56, 1033–1036 (1997). [CrossRef]
  12. S. Banerjee, P. S. Spencer, and K. A. Shore, “Tunable quantum cascade lasers with phase-matched third harmonic generation,” Appl. Phys. Lett. 89, 051113 (2006). [CrossRef]
  13. M. Giovannini, M. Beck, N. Hoyler, and J. Faist, “Second harmonic generation in (111)-oriented InP-based quantum cascade laser,” J. Appl. Phys. 101, 103107 (2007). [CrossRef]
  14. J. Bai and D. S. Citrin, “Intracavity nonlinearities in quantum-cascade lasers,” J. Appl. Phys. 106, 031101 (2009). [CrossRef]
  15. M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F. S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 μm In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010). [CrossRef]
  16. S. Liu, H. Cai, E. Lalanne, P. Q. Liu, X. Wang, C. Gmachl, and A. M. Johnson, “Second harmonic generation in quantum cascade lasers pumped by femtosecond mid-infrared pulses,” Appl. Phys. Lett. 99, 122104 (2011). [CrossRef]
  17. C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, R. Kohler, A. Hutchinson, and A. Cho, “Dependence of the device performance on number of stages in quantum-cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 808–816 (1999). [CrossRef]
  18. G. Chen, T. Yang, C. Peng, and R. Martini, “Self-consistent approach for quantum cascade laser characteristic simulation,” IEEE J. Quantum Electron. 47, 1086–1093 (2011). [CrossRef]
  19. N. K. Das, Y. Yamayoshi, and H. Kawaguchi, “Analysis of basic four-wave mixing characteristics in a semiconductor optical amplifier by the finite-difference beam propagation method,” IEEE J. Quantum Electron. 36, 1184–1192 (2000). [CrossRef]
  20. J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34, 1263–1269 (1998). [CrossRef]
  21. J. M. Tang, P. S. Spencer, and K. A. Shore, “Amplification of picosecond optical pulses in midinfrared intersubband semiconductor optical amplifiers,” Appl. Phys. Lett. 77, 2449–2451 (2000). [CrossRef]
  22. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335–1339 (1990). [CrossRef]
  23. H. Choi, L. Diehl, F. Capasso, D. Bour, S. Corzine, J. Zhu, G. Hofler, and T. B. Norris, “Time-domain up conversion measurements of group-velocity dispersion in quantum cascade lasers,” Opt. Express 15, 15898–15907 (2007). [CrossRef]
  24. N. Kumazaki, Y. Takagi, M. Ishihara, K. Kasahara, A. Sugiyama, N. Akikusa, and T. Edamura, “Spectral behavior of linewidth enhancement factor of a mid-infrared quantum cascade laser,” Jpn. J. Appl. Phys. 47, 6320–6326 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited