OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2834–2840

Light turn-on transient of a whispering gallery mode resonance spectrum in different gas atmospheres

Huiyi Natalie Luo, Heejoo Shua Kim, Monica Agarwal, and Iwao Teraoka  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2834-2840 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the resonance spectrum change after turning on the light to feed the fiber taper evanescently coupled to a silica whispering gallery mode (WGM) resonator surrounded by different gases at different pressures. The resonance shifted to a longer wavelength, indicating a temperature rise, before reaching a steady state. The increment was proportional to the power of the light and approximately reciprocally proportional to the thermal conductivity of the surrounding gas, whereas the rate of the shift was approximately proportional to the thermal conductivity. The temperature rise, caused by absorption of intense WGM in silica, was significant even when the wavelength scan range contained only a few tall resonance peaks. We then estimated the power of heat generation and the mean power of WGM during the wavelength scan.

© 2013 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(260.5740) Physical optics : Resonance
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 21, 2012
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 12, 2013
Published: April 17, 2013

Huiyi Natalie Luo, Heejoo Shua Kim, Monica Agarwal, and Iwao Teraoka, "Light turn-on transient of a whispering gallery mode resonance spectrum in different gas atmospheres," Appl. Opt. 52, 2834-2840 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” Progr. Rep. 42-162 (IPN, 2005), p. 1.
  2. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006). [CrossRef]
  3. I. Teraoka and S. Arnold, “Theory on resonance shifts in TE and TM whispering gallery modes by non-radial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006). [CrossRef]
  4. G. Schweiger and M. Horn, “Effect of changes in size and index of refraction on the resonance wavelength of microspheres,” J. Opt. Soc. Am. A 23, 212–217 (2006). [CrossRef]
  5. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27, 512–514 (2002). [CrossRef]
  6. M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on silica surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007). [CrossRef]
  7. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  8. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059(2002). [CrossRef]
  9. H. Zhu, J. D. Suter, and X. Fan, “Label-free optical ring resonator bio/chemical sensors,” in Optical Guided-Wave Chemical and Biosensors II, M. Zourob and A. Lakhtakia, eds. (Springer, 2010).
  10. S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors 11, 785–805 (2011). [CrossRef]
  11. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393 (1989). [CrossRef]
  12. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004). [CrossRef]
  13. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16, 6285–6301 (2008). [CrossRef]
  14. A. T. Rosenberger, E. B. Dale, D. Ganta, and J. P. Rezac, “Investigating properties of surfaces and thin films using microsphere whispering-gallery modes,” Proc. SPIE 6872, 68720U (2008). [CrossRef]
  15. D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135, 084313 (2011). [CrossRef]
  16. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007). [CrossRef]
  17. J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook, 4th ed. (Prentice-Hall, 1981).
  18. P. Atkins and J. de Paula, Elements of Physical Chemistry, 5th ed. (Oxford, 2009).
  19. D. Keng, “Surface interaction, polarization and molecular weight effects for a whispering gallery mode sensor,” Ph.D. thesis (Polytechnic Institute of NYU, 2009).
  20. E. A. Mason and S. C. Saxena, “Approximate formula for the thermal conductivity of gas mixtures,” Phys. Fluids 1, 361–369 (1958). [CrossRef]
  21. M. Agarwal and I. Teraoka, “Mode latching and self tuning of whispering gallery modes in a stand-alone silica microsphere,” Appl. Phys. Lett. 101, 251105 (2012). [CrossRef]
  22. Corning SMF-28 Optical Fiber Product Information (2002).
  23. From the chart in http://www.invocom.et.put.poznan.pl/~invocom/C/P1-9/swiatlowody_en/p1-1_2_2.htm .
  24. The estimates of the scattering component and absorption component vary from report to report. The value we use here is an example.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited