OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2866–2873

Ultrafast all-optical switching using signal flow graph for PANDA resonator

Mahdi Bahadoran, Jalil Ali, and Preecha P. Yupapin  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2866-2873 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (703 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.

© 2013 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: January 7, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 25, 2013
Published: April 18, 2013

Mahdi Bahadoran, Jalil Ali, and Preecha P. Yupapin, "Ultrafast all-optical switching using signal flow graph for PANDA resonator," Appl. Opt. 52, 2866-2873 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51, 1392–1394 (1987). [CrossRef]
  2. B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical digital logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30, 190–194 (2009). [CrossRef]
  3. M. Soljacic, M. Ibanescu, C. Luo, S. G. Johnson, S. Fan, Y. Fink, and J. D. Joannopoulos, “All-optical switching using optical bistability in nonlinear photonic crystals,” Proc. SPIE 5000, 200–214 (2003). [CrossRef]
  4. S. Zhang, D. Owens, Y. Liu, M. Hill, D. Lenstra, A. Tzanakaki, G. D. Khoe, and H. Dorren, “Multistate optical memory based on serially interconnected lasers,” IEEE Photon. Technol. Lett. 17, 1962–1964 (2005). [CrossRef]
  5. A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Poti, and A. Bogoni, “20 ps transition time all-optical SOA-based flip-flop used for photonic 10  Gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14, 808–815 (2008). [CrossRef]
  6. A. Bahrampour, S. Zakeri, S. M. A. Mirzaee, Z. Ghaderi, and F. Farman, “All-optical set–reset flip–flop based on frequency bistability in semiconductor microring lasers,” Opt. Commun. 282, 2451–2456 (2009). [CrossRef]
  7. A. Bahrampour, M. Karimi, M. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008). [CrossRef]
  8. V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002). [CrossRef]
  9. P. A. Costanzo-Caso, Y. Jin, S. Granieri, and A. Siahmakoun, “Optical bistability in a nonlinear-SOA-based fiber ring resonator,” J. Nonlinear Opt. Phys. Mater. 20, 281–292 (2010). [CrossRef]
  10. P. P. Yupapin and S. Suchat, “Nonlinear penalties and benefits of light traveling in a fiber optic ring resonator,” Optik. 120, 216–221 (2009). [CrossRef]
  11. F. Sanchez, “Optical bistability in a 2×2 coupler fiber ring resonator: parametric formulation,” Opt. Commun. 142, 211–214 (1997). [CrossRef]
  12. N. Dou and C. Li, “Optical bistability in fiber ring resonator containing an EDFA,” Opt. Commun. 281, 2238–2242 (2008). [CrossRef]
  13. F. S. Felber and J. H. Marburger, “Theory of nonresonant multistable optical devices,” Appl. Phys. Lett. 28, 731–733 (1976). [CrossRef]
  14. J. H. Marburger and F. S. Felber, “Theory of a lossless nonlinear Fabry–Perot interferometer,” Phys. Rev. A 17, 335–342 (1978). [CrossRef]
  15. D. Miller, “Refractive Fabry–Perot bistability with linear absorption: theory of operation and cavity optimization,” IEEE J. Quantum Electron. 17, 306–311 (1981). [CrossRef]
  16. K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980). [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  18. H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, “Observation of bifurcation to chaos in an all-optical bistable system,” Phys. Rev. Lett. 50, 109–112 (1983). [CrossRef]
  19. J. Harbold, F. Ö. Ilday, F. Wise, J. Sanghera, V. Nguyen, L. Shaw, and I. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002). [CrossRef]
  20. S. J. Mason, “Feedback theory-some properties of signal flow graphs,” Proc. IRE 41, 1144–1156 (1953). [CrossRef]
  21. S. J. Mason, “Feedback theory-further properties of signal flow graphs,” Proc. IRE 44, 920–926 (1956). [CrossRef]
  22. B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber optic signal lattice processing,” Proc. IEEE 72, 909–930 (1984). [CrossRef]
  23. S. Mitatha, K. Dejhan, P. P. Yupapin, and N. Pornsuwancharoen, “Chaotic signal generation and coding using a nonlinear micro ring resonator,” Optik 121, 120–125 (2010). [CrossRef]
  24. P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280, 343–350 (2007). [CrossRef]
  25. P. P. Yupapin and N. Pornsuwancharoen, “Proposed nonlinear microring resonator arrangement for stopping and storing light,” IEEE Photon. Technol. Lett. 21, 404–406 (2009). [CrossRef]
  26. P. P. Yupapin, N. Pornsuwancharoen, and S. Chaiyasoonthorn, “Attosecond pulse generation using the multistage nonlinear microring resonators,” Microw. Opt. Technol. Lett. 50, 3108–3111 (2008). [CrossRef]
  27. P. P. Yupapin, “Coupler-loss and coupling-coefficient-dependent bistability and instability in a fiber ring resonator,” Optik 119, 492–494 (2008). [CrossRef]
  28. N. Zou, W. Li, B. Huang, Z. Xu, S. Xu, and C. Yang, “An optical continuous phase FSK modulation scheme with an arbitrary modulation index over long-haul transmission fiber link,” Opt. Commun. 285, 2591–2595 (2012). [CrossRef]
  29. A. Maurente, F. H. R. França, K. Miki, and J. R. Howell, “Application of approximations for joint cumulative k-distributions for mixtures to FSK radiation heat transfer in multi-component high temperature non-LTE plasmas,” J. Quant. Spectrosc. Radiat. Transfer 113, 1521–1535 (2012). [CrossRef]
  30. M. Bahadoran, A. Afroozeh, J. Ali, and P. P. Yupapin, “Slow light generation using microring resonators for optical buffer application,” Opt. Eng. 51, 044601 (2012). [CrossRef]
  31. C. Sirawattananon, M. Bahadoran, J. Ali, S. Mitatha, and P. P. Yupapin, “Analytical Vernier effects of a PANDA ring resonator for micro force sensing application,” IEEE Trans. Nanotech. 11, 707–712 (2012). [CrossRef]
  32. M. S. Aziz, S. Daud, M. Bahadoran, J. Ali, and P. P. Yupapin, “Light pulse in a modified add–drop optical filter for optical tweezers generation,” J. Nonlinear Opt. Phys. Mater. 21, 1250047 (2012). [CrossRef]
  33. P. Saeung and P. P. Yupapin, “Vernier effect of multiple-ring resonator filters modeling by a graphical approach,” Opt. Eng. 46, 075005 (2007). [CrossRef]
  34. S. Dey and S. Mandal, “Modeling and analysis of quadruple optical ring resonator performance as optical filter using Vernier principle,” Opt. Commun. 285, 439–446 (2012). [CrossRef]
  35. P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272, 81–86 (2007). [CrossRef]
  36. P. Saeung and P. P. Yupapin, “Generalized analysis of multiple ring resonator filters: modeling by using graphical approach,” Optik 119, 465–472 (2008). [CrossRef]
  37. S. Mandal, K. Dasgupta, T. Basak, and S. Ghosh, “A generalized approach for modeling and analysis of ring-resonator performance as optical filter,” Opt. Commun. 264, 97–104 (2006). [CrossRef]
  38. P. P. Yupapin and B. Vanishkorn, “Mathematical simulation of light pulse propagating within a microring resonator system and applications,” Appl. Math. Model. 35, 1729–1738 (2011). [CrossRef]
  39. R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010). [CrossRef]
  40. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited