OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2874–2892

Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar

Jeremy T. Dobler, F. Wallace Harrison, Edward V. Browell, Bing Lin, Doug McGregor, Susan Kooi, Yonghoon Choi, and Syed Ismail  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2874-2892 (2013)
http://dx.doi.org/10.1364/AO.52.002874


View Full Text Article

Enhanced HTML    Acrobat PDF (1720 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO 2 Emissions over Nights, Days, and Seasons (ASCENDS) as a midterm, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype laser absorption spectrometer for making high-precision, column CO 2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the multifunctional fiber laser lidar (MFLL), operates in an intensity-modulated, continuous wave mode in the 1.57 μm CO 2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO 2 column measurements resulting from high signal-to-noise ratio ( > 1300 ) column optical depth (OD) measurements for a 10 s ( 1 km ) averaging interval have been achieved. In situ measurements of atmospheric CO 2 profiles were used to derive the expected CO 2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO 2 columns to within an average of 0.17% or 0.65 ppmv with a standard deviation of 0.44% or 1.7 ppmv . Initial results demonstrating ranging capability using a swept modulation technique are also presented.

© 2013 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar
(300.6360) Spectroscopy : Spectroscopy, laser
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 29, 2013
Manuscript Accepted: February 23, 2013
Published: April 18, 2013

Citation
Jeremy T. Dobler, F. Wallace Harrison, Edward V. Browell, Bing Lin, Doug McGregor, Susan Kooi, Yonghoon Choi, and Syed Ismail, "Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar," Appl. Opt. 52, 2874-2892 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2874


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averty, M. Tignor, and H. L. Miller, eds., Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2007).
  2. National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies, 2007).
  3. M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A Modulated CW Fiber Laser-Lidar Suite for the ASCENDS Mission,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July 2008.
  4. R. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high precision measurements,” Appl. Opt. 42, 6569–6577 (2003). [CrossRef]
  5. J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” presented at the 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January 2012.
  6. E. V. Browell, M. E. Dobbs, J. Dobler, S. Kooi, Y. Choi, F. W. Harrison, B. Moore, and T. S. Zaccheo, “Airborne demonstration of 1.57-micron laser absorption spectrometer for atmospheric CO2 measurements,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 23–24 June 2008.
  7. E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. W. Harrison, B. Moore, and T. S. Zaccheo, “Airborne validation of laser remote measurements of atmospheric carbon dioxide,” presented at the 25th International Laser Radar Conference, St. Petersburg, Russia, 5–9 July 2010.
  8. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005). [CrossRef]
  9. E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: Evaluation of precision and accuracy under wide range of conditions,” presented at the Fall AGU Meeting, San Francisco, California, 5–9 December2011.
  10. E. V. BrowellNASA/LaRCJ. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” presented at the 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January 2012.
  11. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007). [CrossRef]
  12. D. Crisp, R. M. Atlas, F. M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O’Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The orbiting carbon observatory (OCO) mission,” Adv. Space Res. 34, 700–709 (2004). [CrossRef]
  13. C. L. Korb and C. Y. Weng, “Differential absorption lidar technique for measurement of the atmospheric profile,” Appl. Opt. 22, 3759–3770 (1983). [CrossRef]
  14. R. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, 1992).
  15. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008). [CrossRef]
  16. M. P. Barkley, P. S. Monks, and R. J. Engelen, “Comparison of SCIAMACHY and AIRS CO2 measurements over North America during the summer and autumn of 2003,” Geophys. Res. Lett. 33, L20805 (2006). [CrossRef]
  17. T. Yokota, H. Oguma, I. Morino, A. Higurashi, T. Aoki, and G. Inoue, “Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space,” Proc. SPIE 5652, 182 (2004). [CrossRef]
  18. M. Chahine, C. Barnet, E. Olsen, L. Chen, and E. Maddy, “On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2,” Geophys. Res. Lett. 32, L22803 (2005). [CrossRef]
  19. H. Bosch, G. C. Toon, B. Sen, R. A. Washenfelder, P. O. Wennberg, M. Buchwitz, R. de Beek, J. P. Burrows, D. Crisp, M. Christi, B. J. Connor, V. Natraj, and Y. L. Yung, “Space-based near-infrared CO2 measurements: testing the orbiting carbon observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin,” J. Geophys. Res. 111, D23302 (2006). [CrossRef]
  20. M. Dobbs, W. Sharp, E. V. Browell, T. S. Zaccheo, and B. Moore, “A sinusoidal modulated CW integrated path differential absorption lidar for mapping sources and sinks of carbon dioxide from space,” presented at the 14th Coherent Laser Radar Conference, Snowmass, Colorado, 8–13 July2007.
  21. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: asensitivity analysis,” Appl. Phys. B 90, 593–608 (2008). [CrossRef]
  22. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1∶57  μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008). [CrossRef]
  23. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, D. Sakaizawa, S. Kawakami, and M. Nakajima, “Development of 1∶6  μmcontinuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009). [CrossRef]
  24. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62, 770–783 (2010). [CrossRef]
  25. S. Kameyama, M. Imaki, I. Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1∶6  μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011). [CrossRef]
  26. J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138 (2003). [CrossRef]
  27. M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” presented at the AGU Fall Meeting, A1194, San Francisco, California, 11–15 December2006.
  28. J. Dobler, M. Dobbs, S. Zaccheo, J. Nagel, W. Harrison, E. Browell, and B. Moore, “CW fiber laser absorption spectrometer for 02 column measurements in support of the ASCENDS Mission,” presented at the 89th AMS Annual Meeting, Phoenix, Arizona, 11–15 January2009.
  29. M. Dobbs, W. Krabill, M. Cisewski, F. W. Harrison, C. K. Shum, D. McGregor, M. Neal, and S. Stokes, “A multifunctional fiber laser lidar for earth science and exploration,” presented at the Proceedings of Earth Science Technology Conference, College Park, Maryland, 24–26 June2008.
  30. Stanford Research Systems, “About lock-in amplifiers: application note,” http://www.srsys.com/html/application_notes.html .
  31. M. L. Simpson, M. Cheng, T. Q. Dam, K. E. Lenox, J. R. Price, J. M. Storey, E. A. Wachter, and W. G. Fisher, “Intensity-modulated, stepped frequency cw lidar for distributed aerosol and hard target measurements,” Appl. Opt. 44, 7210 (2005). [CrossRef]
  32. I. Masaharu, S. Kameyama, Y. Hirano, S. Ueno, D. Sakaizawa, S. Kawakami, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012). [CrossRef]
  33. A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011). [CrossRef]
  34. Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008). [CrossRef]
  35. Y. Choi, S. A. Vay, K. P. Vadrevu, A. J. Soja, J.-H. Woo, S. R. Nolf, G. W. Sachse, G. W. Diskin, D. R. Blake, N. J. Blake, H. B. Singh, M. A. Avery, A. Fried, L. Pfister, and H. E. Fuelberg, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX NA,” J. Geophys. Res. 113, D07301 (2008). [CrossRef]
  36. S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108, D20, 8801 (2003). [CrossRef]
  37. HITRAN 2008 database, http://cfa-www.harvard.edu/hitran .
  38. V. M. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348  cm−1: position, intensities, and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007). [CrossRef]
  39. D. A. Hastings, P. K. Dunbar, G. M. Elphingstone, M. Bootz, H. Murakami, H. Maruyama, H. Masaharu, P. Holland, J. Payne, N. A. Bryant, T. L. Logan, J.-P. Muller, G. Schreier, and J. MacDonald, eds., “The global land one-kilometer base elevation (GLOBE) digital elevation model,” Version 1.0, National Oceanic and Atmospheric Administration and National Geophysical Data Center (1999), http://www.ngdc.noaa.gov/mgg/topo/globe.html .
  40. E. V. Browell, M. E. Dobbs, J. Dobler, Susan A. Kooi, Y. Choi, F. W. Harrison, B. Moore, and T. S. Zaccheo, “First airborne laser remote measurements of atmospheric CO2 for future active sensing of CO2 from Space,” presented at the Proceedings of the 8th International Carbon Dioxide Conference, Jena, Germany, 13–18 September2009.
  41. E. Browell, M. E. Dobbs, J. Dobler, S. Kooi, Y. Choi, F. W. Harrison, B. Moore, and T. S. Zaccheo, “First airborne laser remote measurements of atmospheric CO2 for future active sensing of CO2 from space,” presented at the Proceedings of the 8th International Carbon Dioxide Conference, Jena, Germany, 13–18 September2009.
  42. E. Browell, M. E. Dobbs, J. Dobler, S. Kooi, Y. Choi, F. W. Harrison, B. Moore, and T. S. Zaccheo,” First airborne laser remote measurements of atmospheric carbon dioxide, presented at the Fourth Symposium on Lidar Atmospheric Applications,” 89th AMS Annual Meeting, Phoenix, Arizona, 11–15 January2009.
  43. E. Browell, J. Dobler, S. Kooi, M. Fenn, Y. Choi, S. Vay, F. W. Harrison, B. Moore, and T. S. Zaccheo, “Validation of airborne CO2 laser measurements,” presented at the 5th Symposium on Lidar Atmospheric Applications, 91st AMS Annual Meeting, Seattle, Washington, 23–28 January2011.
  44. C. Cook and M. Bernfeld, Radar Signals: An Introduction to Theory and Application (Academic, 1967).
  45. A. Kononov, L. Ulander, and L. Eriksson, “Design of Optimum Weighting Functions for LFM Signals,” in Convergence and Hybrid Information Technologies, M. Crisan, ed. (Computer and Information Science, 2010). http://cdn.intechopen.com/pdfs/10982/InTech-Design_of_optimum_weighting_functions_for_lfm_signals.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited