OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2893–2904

Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers

Andrew W. Caswell, Sukesh Roy, Xinliang An, Scott T. Sanders, Frederick R. Schauer, and James R. Gord  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2893-2904 (2013)
http://dx.doi.org/10.1364/AO.52.002893


View Full Text Article

Enhanced HTML    Acrobat PDF (1257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H2O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H2O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties.

© 2013 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopy

History
Original Manuscript: February 14, 2013
Manuscript Accepted: March 18, 2013
Published: April 19, 2013

Citation
Andrew W. Caswell, Sukesh Roy, Xinliang An, Scott T. Sanders, Frederick R. Schauer, and James R. Gord, "Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers," Appl. Opt. 52, 2893-2904 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2893


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kailasanath, “Recent developments in the research on pulse detonation engines,” AIAA J. 41, 145–159 (2003). [CrossRef]
  2. T. M. Helfrich, F. R. Schauer, R. P. Bradley, and J. L. Hoke, “Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE,” in 45th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2007), paper 2007-234.
  3. F. Schauer, R. Bradley, and J. L. Hoke, “Interaction of a pulsed detonation engine with a turbine,” in 41st AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2003), paper 2003-0891.
  4. K. P. Rouser, P. I. King, F. R. Schauer, R. Sondergaard, and J. L. Hoke, “Unsteady performance of a turbine driven by a pulse detonation engine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (AIAA, 2010), paper 2010-1116.
  5. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000). [CrossRef]
  6. S. Sanders, D. Mattison, L. Ma, J. Jeffries, and R. Hanson, “Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation,” Opt. Express 10, 505–514 (2002). [CrossRef]
  7. D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003). [CrossRef]
  8. Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005). [CrossRef]
  9. T. Kraetschmer, “Hyperspectral lasers for spectroscopic measurements in the near-infrared,” Ph.D. dissertation (University of Wisconsin, 2009).
  10. T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33, 738–740 (2008). [CrossRef]
  11. A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt. 49, 4963–4972 (2010). [CrossRef]
  12. X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-State energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 2355–2362 (2011). [CrossRef]
  13. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007). [CrossRef]
  14. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17, 24013–24019 (2009). [CrossRef]
  15. V. Nagali and R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997). [CrossRef]
  16. V. Nagali, J. T. Herbon, D. C. Horning, D. F. Davidson, and R. K. Hanson, “Shock-tube study of high-pressure H2O spectroscopy,” Appl. Opt. 38, 6942–6950 (1999). [CrossRef]
  17. X. An, A. W. Caswell, and S. T. Sanders, “Quantifying the temperature sensitivity of practical spectra using a new spectroscopic quantity: frequency-dependent Lower-State Energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 779–785(2011). [CrossRef]
  18. H. B. Ebrahimi and C. L. Merkle, “Numerical simulation of a pulse detonation engine with hydrogen fuels,” J. Propul. Power 18, 1042–1048 (2002). [CrossRef]
  19. W. Cai, L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50 kHz rate 2D imaging of temperature and H2O concentration at exhaust plane of J85 engine by hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013). [CrossRef]
  20. J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011). [CrossRef]
  21. J. W. Walewski, J. A. Filipa, and S. T. Sanders, “Optical beating of polychromatic light and its impact on time-resolved spectroscopy. Part I: theory,” Appl. Spectrosc. 62, 220–229 (2008). [CrossRef]
  22. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra,” Appl. Opt. 46, 4117–4124 (2007). [CrossRef]
  23. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010). [CrossRef]
  24. K. H. Lyle, J. B. Jeffries, and R. K. Hanson, “Diode-laser sensor for air-mass flux 1: design and wind-tunnel validation,” AIAA J. 45, 2204–2212 (2007). [CrossRef]
  25. M. F. Miller, W. J. Kessler, and M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996). [CrossRef]
  26. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef]
  27. F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, and X. Chang, “Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors,” Appl. Opt. 50, 6697–6707 (2011). [CrossRef]
  28. B. J. McBride, M. J. Zehe, and S. Gordon, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, NASA/TP-2002-211556, Sept. 2002, http://www.grc.nasa.gov/WWW/CEAWeb/TP-2002-211556.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited