OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 12 — Apr. 20, 2013
  • pp: 2909–2916

Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams

Marie Kasprzack, Benjamin Canuel, Fabien Cavalier, Richard Day, Eric Genin, Julien Marque, Daniel Sentenac, and Gabriele Vajente  »View Author Affiliations


Applied Optics, Vol. 52, Issue 12, pp. 2909-2916 (2013)
http://dx.doi.org/10.1364/AO.52.002909


View Full Text Article

Enhanced HTML    Acrobat PDF (713 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The thermally deformable mirror is a device aiming at correcting beam-wavefront distortions for applications where classical mechanical methods are precluded by noise considerations, as in advanced gravitational wave interferometric detectors. This moderately low-cost technology can be easily implemented and controlled thanks to the good reproducibility of the actuation. By using a flexible printed circuit board technology, we demonstrate experimentally that a device of 61 actuators in thermal contact with the back surface of a high-reflective mirror is able to correct the low-order aberrations of a laser beam at 1064 nm and could be used to optimize the mode matching into Fabry–Perot cavities.

© 2013 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.6810) Lasers and laser optics : Thermal effects
(230.4040) Optical devices : Mirrors
(350.6830) Other areas of optics : Thermal lensing
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 23, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 19, 2013
Published: April 19, 2013

Citation
Marie Kasprzack, Benjamin Canuel, Fabien Cavalier, Richard Day, Eric Genin, Julien Marque, Daniel Sentenac, and Gabriele Vajente, "Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams," Appl. Opt. 52, 2909-2916 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-12-2909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Hello and J. Y. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. France 51, 1267–1282 (1990). [CrossRef]
  2. P. Hello and J. Y. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams,” J. Phys. France 51, 2243–2261 (1990). [CrossRef]
  3. W. Winkler, K. Danzmann, A. Rudiger, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022 (1991). [CrossRef]
  4. J.-Y. Vinet, “On special optical modes and thermal issues in advanced gravitational wave interferometric detectors,” Living Rev. Relativity 12, 2009-5 (2009). [CrossRef]
  5. H. Luck, K. O. Muller, P. Aufmuth, and K. Danzmann, “Correction of wavefront distortions by means of thermally adaptive optics,” Opt. Commun. 175, 275–287 (2000). [CrossRef]
  6. P. Hello, “Compensation for thermal effects in mirrors of gravitational wave interferometers,” Eur. Phys. J. D 15, 373–383 (2001). [CrossRef]
  7. R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Classical Quantum Gravity 19, 1803–1812 (2002).
  8. J. Degallaix, C. Zhao, L. Ju, and D. Blair, “Thermal lensing compensation for AIGO high optical power test facility,” Classical Quantum Gravity 21, S903–S908 (2004). [CrossRef]
  9. H. Luck, A. Freise, S. Gobler, S. Hild, K. Kawabe, and K. Danzmann, “Thermal correction of the radii of curvature of mirrors for GEO 600,” Classical Quantum Gravity 21, S985–S989 (2004). [CrossRef]
  10. R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29, 2635–2637 (2004). [CrossRef]
  11. V. Quetschke, J. Gleason, M. Rakhmanov, J. Lee, L. Zhang, K. Yoshiki Franzen, C. Leidel, G. Mueller, R. Amin, D. B. Tanner, and D. H. Reitze, “Adaptive control of laser modal properties,” Opt. Lett. 31, 217–219 (2006). [CrossRef]
  12. M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive beam shaping by controlled thermal lensing in optical elements,” Appl. Opt. 46, 2153–2165 (2007). [CrossRef]
  13. R. Day, on behalf of the Virgo Collaboration, “Central heating radius of curvature correction for use in large scale gravitational wave interferometers,” Classical Quantum Gravity 30, 055017 (2013). [CrossRef]
  14. Virgo Collaboration, “Advanced Virgo technical design report,” Virgo Collaboration internal document VIR-xxxA-12 (Virgo Collaboration, 2012).
  15. LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011). [CrossRef]
  16. ET Science Team, “Einstein gravitational wave telescope conceptual design study,” ET-0106C-10, 2011, https://tds.ego-gw.it/ql/?c=7954 .
  17. G. Mueller, Q. Shu, R. Adhikari, D. B. Tanner, D. Reitze, D. Sigg, N. Mavalvala, and J. Camp, “Determination and optimization of mode matching into optical cavities by heterodyne detection,” Opt. Lett. 25, 266–268 (2000). [CrossRef]
  18. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Classical Quantum Gravity 19, 1793–1801 (2002). [CrossRef]
  19. E. Calloni, J. T. Baker, F. Barone, R. DeRosa, L. Di Fiore, L. Milano, and S. R. Restaino, “Adaptive optics approach for prefiltering of geometrical fluctuations of the input laser beam of an interferometric gravitational waves detector,” Rev. Sci. Instrum. 74, 2570–2574 (2003). [CrossRef]
  20. S. Avino, “Adaptive optics techniques for gravitational wave interferometers,” Ph.D. thesis (Universita Degli Studi di Napoli Federico II, 2006).
  21. M. Arain, W. Korth, L. Williams, R. Martin, G. Mueller, D. Tanner, and D. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express 18, 2767–2781 (2010). [CrossRef]
  22. B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012). [CrossRef]
  23. S. Velghe, J. Primot, N. Guerineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectionalphase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005). [CrossRef]
  24. J. Alda and G. D. Boreman, “Zernike-based matrix model of deformable mirrors: optimization of the aperture size,” Appl. Opt. 32, 2431–2438 (1993). [CrossRef]
  25. S. Verpoort, and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49, G37–G46 (2010). [CrossRef]
  26. T. F. Coleman and Y. Li, “A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables,” SIAM J. Optim. 6, 1040–1058 (1996). [CrossRef]
  27. M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999).
  28. T. Corbitt, N. Mavalvala, and S. Whitcomb, “Optical cavities as amplitude filters for squeezed fields,” Phys. Rev. D 70, 022002 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited