OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 2994–3003

Micropulse differential absorption lidar for identification of carbon sequestration site leakage

William Johnson, Kevin S. Repasky, and John L. Carlsten  »View Author Affiliations


Applied Optics, Vol. 52, Issue 13, pp. 2994-3003 (2013)
http://dx.doi.org/10.1364/AO.52.002994


View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scanning differential absorption lidar (DIAL) instrument for identification of carbon dioxide leaks at carbon sequestration sites has been developed and initial data has been collected at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes operating in the continuous-wave mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto-optic modulator is used to generate a pulse train used to injection seed an erbium-doped fiber amplifier to produce eye-safe laser pulses with maximum pulse energies of 66 μJ, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 μm. The DIAL receiver uses a 28 cm diameter Schmidt–Cassegrain telescope to collect that backscattered light, which is then monitored using a photomultiplier tube module operating in the photon counting mode. The DIAL has measured carbon dioxide profiles from 1 to 2.5 km with 60 min temporal averaging. Comparisons of DIAL measurements with a Licor LI-820 gas analyzer point sensor have been made.

© 2013 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: September 17, 2012
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 29, 2013
Published: April 24, 2013

Citation
William Johnson, Kevin S. Repasky, and John L. Carlsten, "Micropulse differential absorption lidar for identification of carbon sequestration site leakage," Appl. Opt. 52, 2994-3003 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-13-2994


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. http://www.esrl.noaa.gov/gmd/ccgg/trends/ .
  2. K. Masarie and P. T. Tans, “Extension and integration of atmosphere carbon dioxide data into a globally consistent measurement record,” J. Geophys. Res. 100, 11593–11610 (1995). [CrossRef]
  3. M. Scheffer, V. Brovkin, and P. M. Cox, “Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change,” Geophys. Res. Lett. 33, L10702 (2006). [CrossRef]
  4. M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, eds., IPCC (2007) Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contributions of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2007).
  5. T. Karl, J. Melillo, and T. Peterson, Global Climate Change Impacts on the United States (Cambridge University, 2009).
  6. J. Alcamo, and G. J. J. Kreileman, “Emission scenarios and global climate protection,” Glob. Environ. Change 6, 305–334(1996). [CrossRef]
  7. R. T. Watson, ed., Climate Change 2001. Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2001).
  8. R. J. Norby, and Y. Luo, “Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world,” New Phytol. 162, 281–293 (2004). [CrossRef]
  9. P. T. Tans, Trends in Atmospheric Carbon Dioxide (National Oceanic & Atmospheric Administration, 2006), Vol. 17.
  10. K. Y. Vinnikov, and N. C. Grody, “Global warming trend of mean tropospheric temperature observed by satellites,” Science 302, 269–272 (2003). [CrossRef]
  11. R. A. Houghton, “Balancing the global carbon budget,” Annu. Rev. Earth Planet Sci. 35, 313–347 (2007). [CrossRef]
  12. B. Metz, O. Davidson, R. Swart, and J. Pan, eds., Climate Change 2001—Mitigation. The Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2001).
  13. H. J. Herzog, “What future for carbon capture and sequestration?” J. Am. Chem. Soc. 35, 148–153 (2001).
  14. B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. Meyer, eds., Intergovernmental Panel on Climate Change Special Report on Carbon Dioxide Capture and Storage (Cambridge University, 2005).
  15. Lawrence Berkeley National Laboratory, “An overview of geologic sequestration of CO2,” presented at ENERGEX 2000: Proceedings of the 8th International Energy Forum, Las Vegas, Nevada, 23–28 July (2000).
  16. T. Xu, “CO2 geological sequestration” (Lawrence Berkeley National Laboratory, 2004), paper LBNL-56644 JArt.
  17. D. Mingzhe, L. Zhaowen, L. Shuliang, and S. Huang, “CO2sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity,” Energy Conservation Management 47, 1372–1382 (2006).
  18. J. T. Lityski, S. Plasynski, H. G. McIlvried, C. Mahoney, and R. D. Srivastava, “The United States Department of Energy’s regional carbon sequestration partnerships validation phase,” Environ. Int. 34, 127–138 (2008).
  19. R. Korbol, and A. Kaddour, “Sleipner vest CO2 disposal—injection of removed CO2 into the utsira formation,” Energy Conversion Management 36, 509–512 (1995). [CrossRef]
  20. S. G. Whittaker, “Geological storage of greenhouse gases: the IEA Weyburn CO2 monitoring and storage project,” Reservoir 31, 9 (2004).
  21. S. D. Hovorka, S. M. Benson, C. Doughty, B. M. Freifeld, S. Sakurai, T. M. Daley, Y. K. Kharaka, M. H. Holtz, R. C. Trautz, H. S. Nance, L. R. Myer, and K. G. Knauss, “Measuring permanence of CO2 storage in saline formations: the Frio experiment,” Environ. Geosci. 13, 105–121 (2006).
  22. S. M. Benson, E. Gasperikova, and G. M. Hoversten, “Monitoring protocols and life-cycle costs for geologic storage of carbon dioxide,” in Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies (GHGT-7) (Elsevier, 2005), pp. 1259–1266.
  23. E. J. Wilson, S. J. Friedmann, and M. F. Pollak, “Research and development: incorporating risk, regulation, and liability for carbon capture and sequestration,” Environ. Sci. Technol. 41, 5945–5952 (2007). [CrossRef]
  24. J. L. Barr, S. D. Humphries, A. R. Nehrir, K. S. Repasky, L. M. Dobeck, J. L. Carlsten, and L. H. Spangler, “Laser-based carbon dioxide monitoring instrument testing during a 30-day controlled underground carbon release field experiment,” Int. J. Greenhouse Gas Control 5, 138–145 (2011). [CrossRef]
  25. J. L. Lewicki, C. M. Oldenburg, L. Dobeck, and L. Spangler, “Surface CO2 leakage during the first shallow subsurface CO2 release experiment. LBNL 63528,” Geophys. Res. Lett. 34, L24402 (2007). [CrossRef]
  26. J. L. Lewicki, G. E. Hilley, M. L. Fischer, L. Pan, C. M. Oldenburg, L. Dobeck, and L. Spangler, “Eddy covariance observations of surface leakage during shallow subsurface CO2,” J. Geophys. Res. 114, D12302 (2009). [CrossRef]
  27. D. P. Billesbach, M. L. Fischer, M. S. Torn, and J. A. Berry, “A portable eddy covariance system for measurement of ecosystem-atmosphere exchange of CO2, water vapor, and energy,” J. Atmos. Ocean. Technol. 21, 639–650 (2004). [CrossRef]
  28. National Energy Technology Laboratory, Best Practices for: Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations (National Engineering Technologies Laboratory, 2009).
  29. S. D. Humphries, A. R. Nehrir, C. J. Keith, K. S. Repasky, L. M. Dobeck, J. L. Carlsten, and L. H. Spangler, “Testing carbon sequestration site monitor instruments using a controlled carbon diode release facility,” Appl. Opt. 47, 548–555 (2008). [CrossRef]
  30. A. Cortis, and C. M. Oldenburg, “Short-range atmospheric dispersion of carbon dioxide,” Bound.-Lay. Meteorol. 133, 17–34 (2009). [CrossRef]
  31. A. Cortis, C. M. Oldenburg, and A. A. Unger, “Coupled subsurface-surface layer gas transport and dispersion for geologic carbon sequestration seepage simulation,” in TOUGH Symposium 2003 Proceedings, Berkeley, California, 12–14 May (2003).
  32. V. A. Kovalev, and W. E. Eichinger, Elastic Lidar, Theory, Practice, and Analysis Methods (Wiley, 2004).
  33. G. J. Koch, J. Y. Beyon, F. Gilbert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008). [CrossRef]
  34. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amjaerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004). [CrossRef]
  35. A. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008). [CrossRef]
  36. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 μm differential absorption lidar with quasi-phase matching parametric oscillator and photon-counting detector for the vertical CO2 profile,” Appl. Opt. 48, 748–757 (2009). [CrossRef]
  37. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45, 4448–4458 (2006). [CrossRef]
  38. D. Sakaizawa, C. Nagasawa, T. Nagai, T. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 um for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008). [CrossRef]
  39. F. Gibert, L. Joly, I. Xueref-Remy, M. Schmidt, A. Royer, P. H. Flamant, M. Ramonet, B. Parvitte, G. Durry, and V. Zeninari, “Inter-comparison of 2 um heterodyne differential absorption lidar, laser diode spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio,” Spectrochim. Acta Part A 71, 1914–1921 (2009). [CrossRef]
  40. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 um continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009). [CrossRef]
  41. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 um differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile,” Appl. Opt. 48, 748–757 (2009). [CrossRef]
  42. J. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. Randoph Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B 62, 770–783 (2010). [CrossRef]
  43. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50, 1047–1056 (2011). [CrossRef]
  44. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Performance improvement and analysis of a 1.6 um continuous-wave modulation laser absorption spectrometer system for CO2 sensing,” Appl. Opt. 50, 1560–1569 (2011). [CrossRef]
  45. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011). [CrossRef]
  46. T. R. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 um lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49, 572–580(2011). [CrossRef]
  47. S. Ishii, K. Mizutani, P. Baron, H. Iwai, R. Oda, T. Itabe, H. Fukuoka, T. Ishikawa, M. Koyama, T. Tanaka, I. Morino, O. Uchino, A. Sato, and K. Asai, “Partial CO2 column-averaged dry-air mixing ratio from measurements by coherent 2 um differential absorption and wind lidar with laser frequency offset locking,” J. Atmos. Ocean. Technol. 29, 1169–1181 (2012). [CrossRef]
  48. M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, D. Sakaizawa, S. Kawakami, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 um wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012). [CrossRef]
  49. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  50. T. R. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, and U. N. Singh, “Infrared detectors characterization for CO2 DIAL measurement,” Proc. SPIE 5154, 65–73 (2003). [CrossRef]
  51. E. V. Browell, S. Ismail, and B. E. Grossman, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720 nm region,” Appl. Opt. 30, 1517–1524 (1991). [CrossRef]
  52. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004). [CrossRef]
  53. A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere,” J. Atmos. Ocean. Technol. 28, 131–147 (2011). [CrossRef]
  54. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008). [CrossRef]
  55. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009). [CrossRef]
  56. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003). [CrossRef]
  57. D. Bruneau, P. H. Flamant, and J. Pelon, “Complementary study of differential absorption lidar optimization in direct and heterodyne detections,” Appl. Opt. 45, 4898–4908 (2006). [CrossRef]
  58. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals, and Technology (Academic, 1999).
  59. L. Ma, O. Slattery, and X. Tang, “Detection and spectral measurement of single photons in communication bands using up-conversion technology,” Laser Phys. 20, 1244–1250 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited