OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3004–3011

Changes in chlorophyll a fluorescence of glyphosate-tolerant soybean plants induced by glyphosate: in vivo analysis by laser-induced fluorescence spectroscopy

Joelson Fernandes, William Ferreira Falco, Samuel Leite Oliveira, and Anderson Rodrigues Lima Caires  »View Author Affiliations

Applied Optics, Vol. 52, Issue 13, pp. 3004-3011 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A significant increase in the use of the herbicide glyphosate has generated many questions about its residual accumulation in the environment and possible damage to crops. In this study, changes in chlorophyll a (chl-a) fluorescence induced by glyphosate in three varieties of glyphosate-resistant soybean plants were determined with an in vivo analysis based on a portable laser-induced fluorescence system. Strong suppression of chl-a fluorescence was observed for all plants treated with the herbicide. Moreover, the ratio of the emission bands in the red and far-red regions (685nm/735nm) indicates that the application of glyphosate led to chlorophyll degradation. The results also indicated that the use of glyphosate, even at concentrations recommended by the manufacturer, suppressed chl-a fluorescence. In summary, this study shows that fluorescence spectroscopy can detect, in vivo, very early changes in the photosynthetic status of transgenic soybeans treated with this herbicide.

© 2013 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.2530) Spectroscopy : Fluorescence, laser-induced
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:

Original Manuscript: November 9, 2012
Revised Manuscript: April 1, 2013
Manuscript Accepted: April 1, 2013
Published: April 24, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Joelson Fernandes, William Ferreira Falco, Samuel Leite Oliveira, and Anderson Rodrigues Lima Caires, "Changes in chlorophyll a fluorescence of glyphosate-tolerant soybean plants induced by glyphosate: in vivo analysis by laser-induced fluorescence spectroscopy," Appl. Opt. 52, 3004-3011 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. H. S. Zobiole, J. K. Robert, S. O. Rubem, and C. Jamil, “Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.),” Pestic. Biochem. Physiol. 99, 53–60 (2011). [CrossRef]
  2. M. P. Fuck and M. B. Bonacelli, “Sementes geneticamente modificadas: (in) segurança e racionalidade na adoção de transgênicos no Brasil e na Argentina,” Rev. Iberoam. Cienc. Tecnol. Soc. 4, 9–30 (2009).
  3. F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008). [CrossRef]
  4. M. A. Benamú, M. I. Schneider, and N. E. Sánchez, “Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory,” Chemosphere 78, 871–876 (2010). [CrossRef]
  5. K. N. Reddy, N. Bellaloui, and R. M. Zablotowicz, “Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn,” J. Agric. Food Chem. 58, 3646–3650 (2010). [CrossRef]
  6. A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010). [CrossRef]
  7. N. R. Baker, and E. Rosenqvist, “Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities,” J. Exp. Bot. 55, 1607–1621 (2004). [CrossRef]
  8. C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008). [CrossRef]
  9. S. M. Cicero, R. V. D. Schoor, and H. Jalink, “Use of chlorophyll fluorescence sorting to improve soybean seed quality,” Rev. Bras. Sementes 31, 145–151 (2009). [CrossRef]
  10. J. F. C. Goncalves and U. M. Santo, “Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance,” Braz. J. Plant Physiol. 17, 307–313 (2005). [CrossRef]
  11. P. J. Ralph, “Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence,” Aquat. Bot. 66, 141–152 (2000). [CrossRef]
  12. W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011). [CrossRef]
  13. K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011). [CrossRef]
  14. E. C. Lins, J. Belasque, and L. G. Marcassa, “Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic,” Appl. Opt. 49, 663–667 (2010). [CrossRef]
  15. E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007). [CrossRef]
  16. K. Sonoike, “Photoinhibition of photosystem I,” Physiol. Plant. 142, 56–64 (2011). [CrossRef]
  17. C. Buschmann, “Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves,” Photosynth. Res. 92, 261–271 (2007). [CrossRef]
  18. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999). [CrossRef]
  19. Z. Benediktyova and L. Nedbal, “Imaging of multi-color fluorescence emission from leaf tissues,” Photosynth. Res. 102, 169–175 (2009). [CrossRef]
  20. J. Belasque, M. C. G. Gasparoto, and L. G. Marcassa, “Detection of mechanical and disease stress in citrus by fluorescence spectroscopy,” Appl. Opt. 47, 1922–1926(2008). [CrossRef]
  21. J. Belasque, M. C. G. Gasparoto, L. G. Marcassa, E. C. Lins, and V. S. Bagnato, “Fluorescence spectroscopy applied to orange trees,” Precision Agric. 10, 319–330 (2009). [CrossRef]
  22. L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010). [CrossRef]
  23. A. M. Jenks and M. P. Hasegawa, Plant Abiotic Stress(Blackwell, 2005).
  24. L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited