OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3012–3019

Measurement of the liquid crystal pretilt angle in cells with homogeneous and inhomogeneous liquid crystal director configuration

Victor V. Belyaev, Alexey S. Solomatin, and Denis N. Chausov  »View Author Affiliations


Applied Optics, Vol. 52, Issue 13, pp. 3012-3019 (2013)
http://dx.doi.org/10.1364/AO.52.003012


View Full Text Article

Enhanced HTML    Acrobat PDF (590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical and electro-optical methods of liquid crystal (LC) director pretilt angle measurement are described for LC cells with homogeneous and inhomogeneous LC director distribution. The LC pretilt on both LC substrates can have the same or opposite direction. The phase retardation difference of both extraordinary and ordinary polarized rays passing through an LC cell with homogeneous and inhomogeneous LC director distribution has been calculated versus the LC pretilt angle θ 0 on the cell’s substrates in the range 0 θ 0 90 ° . The experimental procedure for phase retardation difference determination by measurement of the LC cell transmission between crossed polarizers for cells with LC tilted alignment is described. The method developed can also be used in optical compensator design.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(160.0160) Materials : Materials

ToC Category:
Materials

History
Original Manuscript: January 15, 2013
Revised Manuscript: March 26, 2013
Manuscript Accepted: March 26, 2013
Published: April 24, 2013

Citation
Victor V. Belyaev, Alexey S. Solomatin, and Denis N. Chausov, "Measurement of the liquid crystal pretilt angle in cells with homogeneous and inhomogeneous liquid crystal director configuration," Appl. Opt. 52, 3012-3019 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-13-3012


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” in SID’04 Digest (Society for Information Display, 2004), pp. 1200–1203.
  2. P. J. Bos, “Passive optical phase retarders for liquid crystal displays,” in Proceedings of 14th International Display Research Conference (IDRC, 1994), p. 118.
  3. X.-D. Mi, M. Xu, D.-K. Yang, and P. J. Bos, “Effects of pretilt angle on electro-optical properties of Pi-cell LCDs,” in SID’99 Digest (1999), pp. 24–27.
  4. D. K. Yang, and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  5. V. V. Belyaev and V. G. Chigrinov, “Figure of merit of liquid-crystalline materials for optically addressed spatial modulators,” Appl. Opt. 32, 141–146 (1993). [CrossRef]
  6. L. M. Blinov, Structure and Properties of Liquid Crystals (Springer, 2011).
  7. V. G. Chigrinov, “Orientation effects in nematic liquid crystals in electric and magnetic fields,” Sov. Phys. Crystallogr. 27, 245–264 (1982).
  8. O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, “Planar and tilted uniform alignment of liquid crystals by plasma treated substrates,” Liq. Cryst. 31, 859–869 (2004). [CrossRef]
  9. A. Muravsky, A. Murauski, V. Mazaeva, and V. Belyaev, “Parameters on the LC alignment of organosilicon compound films,” J. Soc. Inf. Disp. 13, 349–354 (2005). [CrossRef]
  10. A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E 71, 061707 (2005). [CrossRef]
  11. A. Murauski, V. Chigrinov, and H.-S. Kwok, “New method for measuring polar anchoring energy of nematic liquid crystals,” Liq. Cryst. 36, 779–786 (2009). [CrossRef]
  12. V. Belyaev, A. Solomatin, and D. Chausov, “Phase retardation vs. pretilt angle in liquid crystal cells with homogeneous and inhomogeneous LC director configuration,” Opt. Express 21, 4244–4249 (2013). [CrossRef]
  13. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, Wiley Series in Pure and Applied Optics (Wiley, 2009).
  14. F. W. Harris, D. Zhang, X. J. Zheng, T. C. Germroth, T. Kuo, J. A. Jing, and B. M. King, “Optical compensation films with disk groups for liquid crystal display,” U.S. patent 8,377,558, (19February2013).
  15. C.-L. Kuo, T. Miyashita, M. Suzuki, and T. Uchida, “Crucial influences of K33/K11 ratio on viewing angle of display mode using a bend-alignment liquid-crystal cell with a compensator,” Appl. Phys. Lett. 68, 1461–1463 (1996). [CrossRef]
  16. M. V. Sobolevsky, V. G. Mazaeva, V. I. Kovalenko, V. V. Belyaev, and A. Y. Kalashnikov, “Manufacture and physical properties of silicon-organic films for LC alignment,” Mol. Cryst. Liq. Cryst. 329, 293–304 (1999). [CrossRef]
  17. V. V. Belyaev and V. G. Mazaeva, “Green technologies of LC alignment on the base of organosilicon compunds,” in SID’11 Digest (Society for Information Display, 2011), 1412–1415.
  18. J. Cognard, Alignment of Nematic Liquid Crystals and Their Mixtures, Molecular Crystals and Liquid Crystals (Gordon and Breach, 1982).
  19. M. I. Barnik, S. V. Belyaev, M. F. Grebenkin, V. A. Tsvetkov, and N. M. Shtykov, “Electrical, optical, and viscoelastic properties of a liquid-crystal mixture of azoxy compounds,” Sov. Phys. Crystallogr. 23, 460–464 (1978).
  20. V. F. Petrov, M. F. Grebenkin, M. I. Barnik, V. V. Belyaev, A. V. Ivaschenko, M. V. Loseva, N. I. Chernova, V. I. Grigos, and V. A. Kozunov, USSR Patent No. 1295732, 28January1992.
  21. V. F. Petrov, M. F. Grebenkin, M. I. Barnik, V. V. Belyaev, E. I. Kovshev, A. V. Ivaschenko, M. V. Loseva, N. I. Chernova, G. I. Yudina, V. S. Sevostyanov, and V. A. Molochko, USSR Patent No. 1302683, 28January1992.
  22. M. F. Grebenkin and A. V. Ivashchenko, Liquid Crystalline Materials (Khimiya, 1983) (in Russian).
  23. M. F. Grebyonkin, G. A. Beresnev, and V. V. Belyaev, “Visco-elastic properties of liquid crystalline mixtures,” Mol. Cryst. Liq. Cryst. 103, 1–18 (1983). [CrossRef]
  24. V. V. Belyaev and M. F. Grebenkin, “Rotational viscosity of mixtures of nematic liquid crystals,” Sov. Phys. Crystallogr. 29, 483–484 (1984).
  25. V. V. Belyaev, S. A. Ivanov, and M. F. Grebenkin, “Temperature dependence of rotational viscosity of nematic liquid crystals,” Sov. Phys. Crystallogr. 30, 674–682 (1985).
  26. A. A. Muravsky, A. A. Murausky, V. G. Mazaeva, and V. V. Belyaev, “Parameters of LC alignment on films of organosilicon compounds,” J. Soc. Inf. Disp. 13, 349–356 (2005). [CrossRef]
  27. V. V. Belyaev, A. S. Solomatin, D. N. Chausov, V. M. Shoshin, Y. P. Bobylev, A. A. Muravskii, A. A. Muravskii, V. G. Mazaeva, S. N. Natsyuk, and A. A. Gorbunov, “Different polarity NLC alignment on organosilicon films of varying molecular structure,” in Proceedings of Thirty-first IDRC Eurodisplay 2011, Arcachon, France, 19–22 September 2011 (Society for Information Display, 2011), pp. 17–19.
  28. V. V. Belyaev, A. S. Solomatin, D. N. Chausov, and A. A. Gorbunov, “Measurement of the LC pretilt angle and polar anchoring in cells with homogeneous and inhomogeneous LC director configuration and weak anchoring on organosilicon aligning films,” in SID’12 Digest (Society for Information Display, 2012), pp. 1422–1425.
  29. S. Chandrasekhar, Liquid Crystals (Cambridge University, 1977).
  30. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001). [CrossRef]
  31. Y. Zhang, F. Song, H. Li, and X. Yang, “Precise measurement of optical phase retardation of a wave plate using modulated-polarized light,” Appl. Opt. 49, 5837–5843 (2010). [CrossRef]
  32. T. Opara, J. W. Baran, and J. Zmija, “Interferential method for determining the inclination angle of molecules in plane-parallel liquid crystalline layers,” Cryst. Res. Technol. 23, 1073–1083 (1988). [CrossRef]
  33. K. Y. Han, T. Miyashita, and T. Uchida, “Accurate measurement of pretilt angle in the liquid crystal cell by an improved crystal rotation method,” Mol. Cryst. Liq. Cryst. 241, 147–157 (1994). [CrossRef]
  34. V. V. Belyaev, V. G. Mazaeva, S. N. Timofeyev, and A. A. Min’ko, “Liquid crystal alignment by linear and cyclic organosiloxanes with molecular microrelief,” in Proceedings of 28th International Display Res. Conf. EuroDisplay’09, Rome, Italy, 14–17 September (2009), pp. 139–142.
  35. G. A. Beresnev, V. G. Chigrinov, and M. F. Grebenkin, “New method to determine K33/K11 ratio in nematic liquid crystals,” Sov. Phys. Crystallogr. 27, 1019–1021 (1982).
  36. C. Dascalu, “Asymmetric electrooptic response in a nematic liquid crystal,” Revista Mexicana de Fisica. 47, 281–285 (2001).
  37. X. Nie, “Anchoring energy and pretilt angle effects on liquid crystal response time,” Ph.D. thesis (University of Central Florida, 2007).
  38. B. Cerrolaza, M. A. Geday, X. Quintana, and J. M. Oton, “An optical method for pretilt and profile determination in LCOS VAN displays,” J. Display Technol. 7, 141–150 (2011). [CrossRef]
  39. A. A. Karetnikov, N. A. Karetnikov, A. P. Kovshik, and Y. I. Rjumtsev, “New method of determination of the tilt angle at a liquid crystal-glass interface,” http://arxiv.org/pdf/0910.2162.pdf .
  40. H. P. Hinov and S. Sainov, “Total internal reflection from nematic liquid crystals,” Rev. Phys. Appl. 15, 1307–1321 (1980). [CrossRef]
  41. M. Warenghem and S. Peralta, “Nematic film under electric field: total internal reflection, surface tilt angle and anchoring energy,” Mol. Cryst. Liq. Cryst. 375, 553–562 (2002). [CrossRef]
  42. A. Murauski, V. Chigrinov, and H.-S. Kwok, “New method for measuring polar anchoring energy of nematic liquid crystals,” Liq. Cryst. 36, 779–786 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited