OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3039–3047

Generation and scanning of Airy beams array by combining multiphase patterns

Xiao-Zhang Wang, Qi Li, Zhi-Peng Xiong, Ze Zhang, and Qi Wang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 13, pp. 3039-3047 (2013)
http://dx.doi.org/10.1364/AO.52.003039


View Full Text Article

Enhanced HTML    Acrobat PDF (1854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The method of superimposing multiple phase patterns to generate and deflect multi Airy beams is proposed in this paper. A Dammann grating and an optimized splitting grating are superimposed, respectively, with an Airy cubic phase pattern to generate an array of 4×4 equal-space Airy beams. By adding a deflection grating to the superimposed phase patterns, the transverse self-accelerated Airy beams array can be deflected arbitrarily in two-dimensional plane. The impacts of superimposed phase patterns on the transverse acceleration and size of main lobe of Airy beams in array are discussed in this paper. Meanwhile, the accuracy of the steering method and the impact of the phase modulation depth on the size of the Airy beams are introduced.

© 2013 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.2770) Diffraction and gratings : Gratings
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 25, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 3, 2013
Published: April 26, 2013

Citation
Xiao-Zhang Wang, Qi Li, Zhi-Peng Xiong, Ze Zhang, and Qi Wang, "Generation and scanning of Airy beams array by combining multiphase patterns," Appl. Opt. 52, 3039-3047 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-13-3039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Siviloglou and D. N. Christodoulides, “Observation of accelerating Airy beams,” Opt. Lett. 32, 979–981 (2007). [CrossRef]
  2. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Aire, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009). [CrossRef]
  3. J. Baumgartl, M. Mzailu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008). [CrossRef]
  4. R. D. Leonardo, F. Ianni, and G. Rucco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007). [CrossRef]
  5. D. Palima and V. R. Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt. 46, 4197–4201 (2007). [CrossRef]
  6. P. Garcia-Martinez, M. M. Sanchez-Lopez, J. A. Davis, D. M. Cottrell, D. Sand, and I. Moreno, “Generation of Bessel beam arrays through Dammann gratings,” Appl. Opt. 51, 1375–1381 (2012). [CrossRef]
  7. J. Yu, C. Zhou, W. Jia, A. Hu, W. Cao, J. Wu, and S. Wang, “Three-dimensional Dammann vortex array with tunable topological charge,” Appl. Opt. 51, 2485–2490 (2012). [CrossRef]
  8. Y. Shinoda, J. P. Liu, P. S. Chung, K. Dobson, X. Zhou, and T. C. Poon, “Three-dimensional complex image coding using a circular Dammann grating,” Appl. Opt. 50, B38–B45 (2011). [CrossRef]
  9. J. A. Davis, I. Moreno, J. L. Martinex, T. J. Hernandez, and D. M. Cottrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Opt. 50, 3653–3657 (2011). [CrossRef]
  10. L. A. Romero, and F. M. Dickey, “Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings,” J. Opt. Soc. Am. A 24, 2280–2295 (2007). [CrossRef]
  11. J. Albero, and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. Opt. 14, 075704 (2012). [CrossRef]
  12. J. Albero, I. Moreno, J. A. Davis, D. M. Cottrell, and D. Sand, “Generalized phase diffraction gratings with tailored intensity,” Opt. Lett. 37, 4227–4229 (2012). [CrossRef]
  13. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35, 2260–2262 (2010). [CrossRef]
  14. Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Self-accelerating Airy beams: generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen and M. Roberto, eds., Springer Series in Optical Sciences (Springer, 2012), Vol. 171, pp. 1–46.
  15. X.-Z. Wang, Q. Li, and Q. Wang, “Arbitrary scanning of the Airy beams using additional phase grating with cubic phase mask,” Appl. Opt. 51, 6726–6731 (2012). [CrossRef]
  16. N. Zhang, X. C. Yuan, and R. E. Burge, “Extending the detection range of optical vortices by Dammann vortex gratings,” Opt. Lett. 35, 3495–3497 (2010). [CrossRef]
  17. C. Zhou, and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34, 5961–5969 (1995). [CrossRef]
  18. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Cincotti, E. Di Fabrizio, and M. Gentili, “Analytical derivation of the optimum triplicator,” Opt. Commun. 157, 13–16(1998). [CrossRef]
  19. D. Engstrom, J. Bengtsson, E. Eriksson, and M. Goksor, “Improved beam steering accuracy of a single beam with a 1D phase-only spatial light modulator,” Opt. Express 16, 18275–18287 (2008). [CrossRef]
  20. P. F. McManamon, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009). [CrossRef]
  21. A. Lizana, A. Marquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, and J. Campos, “The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators,” Opt. Express 18, 10581–10593 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited