OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3048–3057

Femtosecond laser-induced breakdown spectroscopy of surface nitrate chemicals

Tariq Ahmido, Antonio Ting, and Prabhakar Misra  »View Author Affiliations

Applied Optics, Vol. 52, Issue 13, pp. 3048-3057 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1607 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrashort laser-induced breakdown spectroscopy was used to detect the emission radiation from the breakdown of surface contaminants by a femtosecond laser pulse. This study focused on the detection of visible to near-infrared radiation signatures from molecular fragments of the nitro (NOx) group present in the breakdown plasma, where target chemicals of potassium nitrate (KNO3) and sodium nitrate (NaNO3) were used. Spectral signatures at a wavelength region around 410 nm were observed for both KNO3 and NaNO3, and were identified as the fluorescence transitions of the NOx-molecular structures. The signatures obtained were systematically analyzed and studied as functions of laser parameters. It is shown that for laser parameters used in this study, laser pulse durations 1ps were not as effective as shorter pulses in generating these signatures. A visible wavelength NOx signature and the extended high-intensity propagation of a femtosecond laser could be advantageous to detecting nitro-group energetic materials at standoff distances.

© 2013 Optical Society of America

OCIS Codes
(320.7150) Ultrafast optics : Ultrafast spectroscopy
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: January 14, 2013
Revised Manuscript: March 27, 2013
Manuscript Accepted: April 3, 2013
Published: April 26, 2013

Tariq Ahmido, Antonio Ting, and Prabhakar Misra, "Femtosecond laser-induced breakdown spectroscopy of surface nitrate chemicals," Appl. Opt. 52, 3048-3057 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge University, 2006).
  2. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003). [CrossRef]
  3. P. Lucena, A. Doña, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B Atom. Spectros. 66, 12–20 (2011). [CrossRef]
  4. W. L. Kruer, The Physics of Laser Plasma Interactions(Addison-Wesley, 1988), Chap. 5.
  5. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001). [CrossRef]
  6. K. Song, Y. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002). [CrossRef]
  7. P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004). [CrossRef]
  8. Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006). [CrossRef]
  9. H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82, 655–658 (2006). [CrossRef]
  10. H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007). [CrossRef]
  11. D. Mirell and O. Chalus, “Remote sensing of explosives using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, B108–B111 (2008). [CrossRef]
  12. C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006). [CrossRef]
  13. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009). [CrossRef]
  14. F. R. Doucet, P. J. Faustino, M. Sabsabi, and R. C. Lyon, “Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics,” J. Anal. At. Spectrom. 23, 694–701 (2008). [CrossRef]
  15. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006). [CrossRef]
  16. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006). [CrossRef]
  17. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001). [CrossRef]
  18. G. A. Raiche and D. R. Crosley, “Temperature dependent quenching of the AΣ+2 and BΠ2 states of NO,” J. Chem. Phys. 92, 5211–5217 (1990). [CrossRef]
  19. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995). [CrossRef]
  20. P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002). [CrossRef]
  21. I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004). [CrossRef]
  22. A. Ting, I. Alexeev, D. Gordon, E. Briscoe, J. Peñano, R. Hubbard, P. Sprangle, and G. Rube, “Remote atmospheric breakdown for standoff detection by using an intense short laser pulse,” Appl. Opt. 44, 5315–5320 (2005). [CrossRef]
  23. J. Janni, B. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997). [CrossRef]
  24. D. S. Moore, “Comparative infrared and Raman spectroscopy of energetic polymers,” J. Mol. Struct. 661–662, 561–566 (2003). [CrossRef]
  25. R. W. B. Pearse and A. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, 1965).
  26. M. Brook and J. Kaplan, “Dissociation energy of NO and N2,” Phys. Rev. 96, 1540–1542 (1954). [CrossRef]
  27. T. Ahmido, “Remote sensing of explosive surrogate using ultrashort laser induced breakdown spectroscopy,” Ph.D. dissertation (Howard University, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited