OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3058–3065

Generation of a uniform-square focal spot by a compound lens for solar concentration applications

Shih-Hsin Ma, Chun-Ming Tseng, and Yun-Parn Lee  »View Author Affiliations


Applied Optics, Vol. 52, Issue 13, pp. 3058-3065 (2013)
http://dx.doi.org/10.1364/AO.52.003058


View Full Text Article

Enhanced HTML    Acrobat PDF (962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a compound lens for solar photovoltaic system applications, which is composed of a front aspheric or Fresnel surface and a back array of concave surfaces. In contrast to earlier designs, the proposed method can simultaneously focus and shape sun light into a uniform-square pattern on the solar cell. For a square solar cell, this approach can maximize the solar cell’s opto-electric conversion efficiency by enhancing the concentrated pattern’s uniformity. In this article, the theoretical models of the beam shaping focused lens is derived and then compared with experimental data. The tolerance in assembling the component of the concentrator is also analyzed and the corresponding simulation and experimental results are discussed in detail.

© 2013 Optical Society of America

OCIS Codes
(220.1770) Optical design and fabrication : Concentrators
(220.2740) Optical design and fabrication : Geometric optical design
(080.4298) Geometric optics : Nonimaging optics
(220.4298) Optical design and fabrication : Nonimaging optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 3, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 3, 2013
Published: April 26, 2013

Citation
Shih-Hsin Ma, Chun-Ming Tseng, and Yun-Parn Lee, "Generation of a uniform-square focal spot by a compound lens for solar concentration applications," Appl. Opt. 52, 3058-3065 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-13-3058


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express 18, A73–A78 (2010). [CrossRef]
  2. R. Winston, “Principles of solar concentrators of a novel design,” Sol. Eng. 16, 89–95 (1974). [CrossRef]
  3. K. Araki, T. Yano, and Y. Kuroda, “30 kW concentrator photovoltaic system using dome-shaped Fresnel lenses,” Opt. Express 18, A53–A63 (2010). [CrossRef]
  4. M. Park, K. Oh, J. Kim, H. W. Shin, and B. D. Oh, “A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell,” Opt. Express 18, 1777–1787 (2010). [CrossRef]
  5. J. M. Gordon, “Aplanatic optics for solar concentration,” Opt. Express 18, A41–A52 (2010). [CrossRef]
  6. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010). [CrossRef]
  7. C. M. Wang, H. I. Huang, J. W. Pan, H. Z. Kuo, H. F. Hong, H. Y. Shin, and J. Y. Chang, “Single stage transmission type broadband solar concentrator,” Opt. Express 18, A118–A125 (2010). [CrossRef]
  8. N. Shatz, J. Bortz, and R. Winston, “Thermodynamic efficiency of solar concentrators,” Opt. Express 18, A5–A16 (2010). [CrossRef]
  9. C. G. Young, “A sun-pumped cw one-watt laser,” Appl. Opt. 5, 993–998 (1966). [CrossRef]
  10. A. Segal, M. Epstein, and A. Yogev, “Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands,” Sol. Eng. 76, 591–601 (2004). [CrossRef]
  11. R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617–2619 (2005). [CrossRef]
  12. K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Rew. Eng. 34, 1364–1370 (2009). [CrossRef]
  13. C. F. Chen, C. H. Lin, H. T. Jan, and Y. L. Yang, “Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method,” Opt. Commun. 282, 360–366 (2009). [CrossRef]
  14. D. Chemisana, “Building integrated concentrating photovoltaics : a review,” Renew. Sustain. Energ. Rev. 15, 603–611(2011). [CrossRef]
  15. P. A. Davies, “Light-trapping lenses for solar cells,” Appl. Opt. 31, 6021–6026 (1992). [CrossRef]
  16. M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17, 6487–6492 (2009). [CrossRef]
  17. P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18, A25–A40 (2010). [CrossRef]
  18. M. Hernandez, A. Cvetkovic, P. Benitez, and J. C. Miñano, “High-performance Kohler concentrators with uniform irradiance on solar cell,” Proc. SPIE 7059, 705908 (2008). [CrossRef]
  19. D. Esparza and I. Moreno, “Solar concentrator with diffuser segments,” Proc. SPIE 8011, 80117B (2011). [CrossRef]
  20. E. M. Kritchman, A. A. Friesem, and G. Yekutieli, “Efficient Fresnel lens for solar concentration,” Sol. Eng. 22, 119–123 (1979). [CrossRef]
  21. N. C. Yeh, “Analysis of spectrum distribution and optical losses under Fresnel lenses,” Renew. Sustain. Energ. Rev. 14, 2926–2935 (2010). [CrossRef]
  22. H. Zhai, Y. J. Dai, J. Y. Wu, R. Z. Wang, and L. Y. Zhang, “Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens,” Energy Convers. Manage. 51, 48–55 (2010). [CrossRef]
  23. D. Chemisana and M. Ibáñez, “Linear Fresnel concentrators for building integrated applications,” Energy Convers. Manage. 51, 1476–1480 (2010). [CrossRef]
  24. V. D. Rumyantsev, “Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells,” Opt. Express 18, A17–A24 (2010). [CrossRef]
  25. X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986). [CrossRef]
  26. Y. Lin, G. N. Lawrence, and J. Buck, “Characterization of excimer lasers for application to lenslet array homogenizers,” Appl. Opt. 40, 1931–1941 (2001). [CrossRef]
  27. A. Büttner and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41, 2393–2401 (2002). [CrossRef]
  28. J. A. Hoffnagle and C. M. Jefferson, “Beam shaping with a plano-aspheric lens pair,” Opt. Eng. 42, 3090–3099 (2003). [CrossRef]
  29. T. R. M. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109–120 (2003). [CrossRef]
  30. T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng. 42, 3084–3085 (2003). [CrossRef]
  31. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31, 3016–3018 (2006). [CrossRef]
  32. J. J. Yang, Y. S. Liao, and C. F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun. 270, 433–440 (2007). [CrossRef]
  33. O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” Proc. SPIE 6876, 68760 (2008). [CrossRef]
  34. T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008). [CrossRef]
  35. D. Hauschild, O. Homburg, T. Mitra, M. Ivanenko, M. Jarczynski, J. Meinschien, A. Bayer, and V. Lissotschenko, “Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells,” Proc. SPIE 7202, 72020U (2009). [CrossRef]
  36. K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Eng. 80, 1580–1587 (2006). [CrossRef]
  37. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 1976).
  38. A. Büttner and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41, 2393–2401 (2002). [CrossRef]
  39. O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” Proc. SPIE 6876, 68760B (2008). [CrossRef]
  40. T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008). [CrossRef]
  41. D. Hauschild, O. Homburg, T. Mitra, M. Ivanenko, M. Jarczynski, J. Meinschien, A. Bayer, and V. Lissotschenko, “Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells,” Proc. SPIE 7202, 72020U (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited