OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3066–3072

Gain-switched Yb-doped fiber laser for microprocessing

Vid Agrež and Rok Petkovšek  »View Author Affiliations


Applied Optics, Vol. 52, Issue 13, pp. 3066-3072 (2013)
http://dx.doi.org/10.1364/AO.52.003066


View Full Text Article

Enhanced HTML    Acrobat PDF (791 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The gain-switched fiber laser presents the simplest construction among pulsed lasers in the nanosecond region and consequently is also very robust. These properties make it potentially appropriate for industrial applications, especially in some types of microprocessing. However, careful design of such lasers is important in order to reach the required pulse parameters (peak power and pulse duration). To design and optimize a gain-switched fiber laser for microprocessing, a numerical model using time and spatial dependencies was developed and reported in this paper. The effects of pump power and laser length on the pulse duration and peak power were investigated by modeling gain-switched operation. Further, the results of modeling were compared to data from an experimental setup based on a Yb3+-doped gain-switched fiber laser, revealing good agreement.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3538) Lasers and laser optics : Lasers, pulsed
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 1, 2013
Revised Manuscript: March 29, 2013
Manuscript Accepted: March 29, 2013
Published: April 26, 2013

Citation
Vid Agrež and Rok Petkovšek, "Gain-switched Yb-doped fiber laser for microprocessing," Appl. Opt. 52, 3066-3072 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-13-3066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006). [CrossRef]
  2. Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011). [CrossRef]
  3. P. Wan, J. Liu, L. M. Yang, and F. Amzajerdian, “Pulse shaping fiber laser at 1.5 μm,” Appl. Opt. 51, 214–219 (2012). [CrossRef]
  4. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19, 10824–10833 (2011). [CrossRef]
  5. W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, and O. Tarasenko, “High-speed electrical switching in optical fibers [Invited],” Appl. Opt. 50, E65–E75 (2011). [CrossRef]
  6. R. Petkovšek, J. Saby, F. Salin, T. Schumi, and F. Bammer, “SCPEM-Q-switching of a fiber-rod-laser,” Opt. Express 20, 7415–7421 (2012). [CrossRef]
  7. R. Petkovšek, F. Bammer, D. Schuöcker, and J. Možina, “Dual-mode single-crystal photoelastic modulator and possible applications,” Appl. Opt. 48, C86–C91 (2009). [CrossRef]
  8. M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17, 17596–17602 (2009). [CrossRef]
  9. S. Maryashin, A. Unt, and V. P. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006). [CrossRef]
  10. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007). [CrossRef]
  11. N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19, 14949–14954 (2011). [CrossRef]
  12. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a ND+3-doped fiber laser,” Opt. Lett. 14, 671–673 (1989). [CrossRef]
  13. K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4, 973–975 (1992). [CrossRef]
  14. S. D. Jackson, B. C. Dickinson, and T. A. King, “Sequence lasing in a gain-switched Yb3+, Er3+-doped silica double-clad fiber laser,” Appl. Opt. 41, 1698–1703 (2002). [CrossRef]
  15. R. T. Su, P. Zhou, H. Xiao, X. L. Wang, and X. J. Xu, “150 W high-average-power, single-frequency nanosecond fiber laser in strictly all-fiber format,” Appl. Opt. 51, 3655–3659 (2012). [CrossRef]
  16. F. He, J. H. Price, K. T. Vu, A. Malinowski, J. K. Sahu, and D. J. Richardson, “Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling,” Opt. Express 14, 12846–12858 (2006). [CrossRef]
  17. Y. Wang, and C. Q. Xu, “Modeling and optimization of Q-switched double-clad fiber lasers,” Appl. Opt. 45, 2058–2071 (2006). [CrossRef]
  18. X. P. Cheng, P. Shum, M. Tang, and R. Wu, “Numerical analysis and characterization of fiber Bragg grating-based Q-switched ytterbium-doped double-clad fiber lasers,” Opt. Lasers Eng. 47, 148–155 (2009). [CrossRef]
  19. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994). [CrossRef]
  20. A. Yariv and P. Yeh, “Amplified spontaneous emission,” in Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), pp. 755–759.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited