OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3073–3078

Polariton spectrum in nonlinear dielectric medium

Igor V. Dzedolik and Olga Karakchieva  »View Author Affiliations

Applied Optics, Vol. 52, Issue 13, pp. 3073-3078 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third-order Kerr-type nonlinearity. We investigate the dependence of number of the polariton spectrum branches on the intensity of electromagnetic field and demonstrate that the appearance of new branches located in the polariton spectrum gap is caused by the influence of dispersion of the third-order dielectric susceptibility at the intensive electromagnetic field in the medium. The modulation instability of new spectrum branch waves leads to the appearance of the cnoidal waves or solitons. These new nonlinear waves one can use for designing optical devices such as the nonlinear optical filter converter.

© 2013 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: December 20, 2012
Revised Manuscript: March 16, 2013
Manuscript Accepted: April 5, 2013
Published: April 29, 2013

Igor V. Dzedolik and Olga Karakchieva, "Polariton spectrum in nonlinear dielectric medium," Appl. Opt. 52, 3073-3078 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. B. Tolpygo, “Physical properties of the salt lattice constructed from deforming ions,” JETP 20, 497–509 (1950) (in Russian).
  2. K. Huang, “On the interaction between the radiation field and ionic crystals,” Proc Roy. Soc. A 208, 352–365 (1951). [CrossRef]
  3. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer, 1984).
  4. E. L. Albuquerque and M. G. Cottam, Polaritons in Periodic and Quasiperiodic Structures (Elsevier, 2004).
  5. D. N. Klyshko, Quantum and Nonlinear Optics (Nauka, 1980) (in Russian).
  6. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  7. I. V. Dzedolik, Polaritons in Optical Fibers and Dielectric Resonators (DIP, 2007) (in Russian).
  8. S. Baher and M. G. Cottam, “Theory of nonlinear s-polarized phonon-polaritons in multilayered structures,” J. Sci. Islamic Repub. Iran 15, 171–177 (2004).
  9. H. Inoue, K. Katayma, Q. Shen, T. Toyoda, and K. Nelson, “Terahertz reflection response measurement using a phonon-polariton wave,” J. Appl. Phys. 105, 054902 (2009). [CrossRef]
  10. Z. Qi, Z.-Q. Shen, C.-P. Huang, S.-N. Zhu, and Y.-Y. Zhu, “Phonon-polaritons in a nonaxial aligned piezoelectric superlattice,” J. Appl. Phys. 105, 074102 (2009). [CrossRef]
  11. I. V. Dzedolik, “Period variation of polariton waves in optical fiber,” J. Opt. A 11, 094012 (2009). [CrossRef]
  12. I. V. Dzedolik and S. N. Lapayeva, “Mass of polaritons in different dielectric media,” J. Opt. 13, 015204 (2011). [CrossRef]
  13. I. V. Dzedolik and O. S. Karakchieva, “Polaritons in nonlinear medium: generation, propagation, and interaction,” in 2011 International Nonlinear Photonics Workshop (IEEE, 2011).
  14. G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012). [CrossRef]
  15. N. A. Kudryashov, P. N. Ryabov, and D. I. Sinelshchikov, “Nonlinear waves in media with fifth order dispersion,” Opt. Lett. A 375, 2051–2055 (2011). [CrossRef]
  16. E. Gaizauskas, A. Savickas, and K. Staliunas, “Radiation from band-gap solitons,” Opt. Commun. 285, 2166–2170 (2012). [CrossRef]
  17. A. Scott, Active and Nonlinear Wave Propagation in Electronics (Wiley, 1970).
  18. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).
  19. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited