OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3088–3093

Characteristics of photonic crystal fibers designed with an annular core using a single material

Shuguang Li, Xiaoxia Zhang, and Govind P. Agrawal  »View Author Affiliations


Applied Optics, Vol. 52, Issue 13, pp. 3088-3093 (2013)
http://dx.doi.org/10.1364/AO.52.003088


View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a kind of photonic crystal fiber (PCF) designed with an annular core and fabricated using a single material. Characteristics of such fibers, including the mode field distributions of both the core and cladding modes, the effective mode area of the fundamental core mode, and the dispersion profile, are investigated using the finite element method. The coupling between the fundamental mode and an excited core mode or cladding mode is discussed in order to apply the proposed design in mode-coupling devices. Results show that such a PCF may be suitable for both optical communications and optical sensing technologies.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization

ToC Category:
Optical Devices

History
Original Manuscript: January 23, 2013
Revised Manuscript: April 2, 2013
Manuscript Accepted: April 2, 2013
Published: April 29, 2013

Citation
Shuguang Li, Xiaoxia Zhang, and Govind P. Agrawal, "Characteristics of photonic crystal fibers designed with an annular core using a single material," Appl. Opt. 52, 3088-3093 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-13-3088


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23, 524–532 (2005). [CrossRef]
  2. S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002). [CrossRef]
  3. S. Choi, T. Eom, Y. Jung, B. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair,” IEEE Photon. Technol. Lett. 17, 115–117 (2005). [CrossRef]
  4. S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 222, 213–219 (2003).
  5. M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).
  6. R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).
  7. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef]
  8. S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13, 6039–6050 (2005). [CrossRef]
  9. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31, 164–166 (2006). [CrossRef]
  10. Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45, 4433–4436 (2006). [CrossRef]
  11. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000). [CrossRef]
  12. G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer, 2000), pp. 195–211.
  13. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365–8371 (2005). [CrossRef]
  14. J. Wang, C. Jiang, W. Hu, and M. Gao, “Properties of index-guided PCF with air-core,” Opt. Laser Technol. 39, 317–321 (2007). [CrossRef]
  15. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007). [CrossRef]
  16. W. Chen, S. Lou, L. Wang, and S. Jian, “Novel modal interferometer based on ring-core photonic crystal fiber,” Chin. Opt. Lett. 8, 986–988 (2010). [CrossRef]
  17. S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode-coupling device applications,” J. Lightwave Technol. 27, 4919–4926 (2009). [CrossRef]
  18. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited