OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3100–3107

Nonlinear swept frequency technique for CO2 measurements using a CW laser system

Joel F. Campbell  »View Author Affiliations


Applied Optics, Vol. 52, Issue 13, pp. 3100-3107 (2013)
http://dx.doi.org/10.1364/AO.52.003100


View Full Text Article

Enhanced HTML    Acrobat PDF (630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A system using a nonlinear multiswept sine wave is described, which employs multichannel multiswept orthogonal waves, to separate channels and make multiple, simultaneous online/offline CO 2 measurements. An analytic expression and systematic method for determining the orthogonal frequencies for the unswept, linear swept, and nonlinear swept cases is presented. It is shown that one may reduce sidelobes of the autocorrelation function while preserving cross channel orthogonality, for thin cloud rejection.

OCIS Codes
(170.4090) Medical optics and biotechnology : Modulation techniques
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: March 5, 2013
Manuscript Accepted: March 26, 2013
Published: April 30, 2013

Citation
Joel F. Campbell, "Nonlinear swept frequency technique for CO2 measurements using a CW laser system," Appl. Opt. 52, 3100-3107 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-13-3100


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. NRC, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (The National Academies, 2007).
  2. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” App. Opt. 43, 5092–5099 (2004). [CrossRef]
  3. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62, 770–783 (2009). [CrossRef]
  4. J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code–based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50, 126002 (2011). [CrossRef]
  5. J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79, 1240–1245 (2011). [CrossRef]
  6. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005). [CrossRef]
  7. O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010). [CrossRef]
  8. M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, D. Sakaizawa, S. Kawakami, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012). [CrossRef]
  9. E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” presented at Fall AGU Meeting, San Francisco, CA, 5–9 December (2011).
  10. E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, LA, 22–26 January (2012).
  11. S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated continuous wave lidar,” Proceedings, 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June (2012).
  12. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011). [CrossRef]
  13. M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” NASA ESTO Conference, June (2006).
  14. M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings, 24th International Laser Radar Conference, Boulder, CO, 24–29 July (2008).
  15. J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, LA, 22–26 January (2012).
  16. D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer: simultaneous measurement of partial column-averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
  17. M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar: Basic Principles (SciTech Publishing, 2010).
  18. C. Cook and M. Bernfeld, Radar Signals: An Introduction to Theory and Application (Academic, 1967).
  19. A. Kononov, L. Ulander, and L. Eriksson, Design of Optimum Weighting Functions for LFM Signals Convergence and Hybrid Information Technologies, M. Crisan, ed. (Intech, 2010). http://www.intechopen.com/books/convergence-and-hybrid-informationtechnologies/
  20. Y. Pan, S. Peng, K. Yang, and W. Dong, “Optimization design of NLFM signal and its pulse compression simulation,” in Proceedings, Radar Conference, 2005 IEEE International (IEEE, 2005) pp. 383–386.
  21. A. W. Doerry, “Generating precision nonlinear FM chirp waveforms,” Proc. SPIE 6547, 6547D (2007). [CrossRef]
  22. L. R. Varshney and D. Thomas, “Sidelobe reduction for matched filter range processing,” in Proceedings of IEEE Radar Conference (IEEE, 2003).
  23. C. Lesnik, “Nonlinear frequency modulated signal design,” Acta Physica Polonica A 116, 351–354 (2009).
  24. J. Campbell, “Synthetic quadrature phase detector/demodulator for Fourier transform spectrometers,” Appl. Opt. 47, 6889–6894 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited